找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring Curvature; James Casey Textbook 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996 Gaussian curvatu

[復(fù)制鏈接]
樓主: 分期
21#
發(fā)表于 2025-3-25 04:45:56 | 只看該作者
22#
發(fā)表于 2025-3-25 11:16:21 | 只看該作者
Keeping Track of Magnitude, Direction and Sense: Vectors,quantities can be represented mathematically by .. It turns out that vectors are also very useful in geometry, and you will have ample opportunity to see this when we study curves and surfaces. In the present chapter, the basic properties of vectors are described.
23#
發(fā)表于 2025-3-25 13:35:20 | 只看該作者
24#
發(fā)表于 2025-3-25 16:19:29 | 只看該作者
Curvature of Curves,inly, the curvature of a straight line should be considered zero. Perhaps then, we can regard a curve as a deviation from a straight line? Let us explore how this idea can be given quantitative meaning.
25#
發(fā)表于 2025-3-25 20:41:19 | 只看該作者
26#
發(fā)表于 2025-3-26 04:10:28 | 只看該作者
Gaussian Curvature,r. We learned that this variation is governed by Euler’s formula (15.30). In the present chapter, a completely different approach is taken, which is not based at all on the curvature of curves. Here, we study a brilliant idea of Gauss’s, which will enable us to define a unique value of . at each point on a smooth surface.
27#
發(fā)表于 2025-3-26 04:31:58 | 只看該作者
,Levi-Civita (1873–1941), Christoffel (1829–1901), Beltrami (1835–1900), and others. During the closing decades of the 19th century, a powerful school of mathematics developed at the University of Padua. It was here that Levi-Civita came into contact with modern geometry.
28#
發(fā)表于 2025-3-26 09:08:07 | 只看該作者
978-3-528-06475-4Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996
29#
發(fā)表于 2025-3-26 12:42:34 | 只看該作者
Studies of Phase Transformations,es give rise. Modem geometry is an extremely active field of research by pure and applied mathematicians, and it also has significant applications in physics and engineering. In the present book, we will explore in a physical manner the geometrical properties of curves and surfaces, and will discuss
30#
發(fā)表于 2025-3-26 17:14:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武川县| 攀枝花市| 眉山市| 祁阳县| 青神县| 河源市| 蓬莱市| 保靖县| 扶余县| 肃宁县| 呼图壁县| 陇川县| 上饶市| 孟村| 正宁县| 社旗县| 肥东县| 从江县| 金乡县| 五台县| 蒙山县| 施甸县| 山阴县| 荥阳市| 永昌县| 苏尼特左旗| 大冶市| 工布江达县| 额济纳旗| 克拉玛依市| 兴山县| 安义县| 汕尾市| 鱼台县| 平原县| 上栗县| 健康| 门源| 屏东市| 卢氏县| 宜丰县|