找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring Classical Greek Construction Problems with Interactive Geometry Software; Ad Meskens,Paul Tytgat Book 2017 Springer Internationa

[復(fù)制鏈接]
樓主: Glitch
21#
發(fā)表于 2025-3-25 06:56:25 | 只看該作者
22#
發(fā)表于 2025-3-25 10:07:26 | 只看該作者
Compact Textbooks in Mathematicshttp://image.papertrans.cn/f/image/320265.jpg
23#
發(fā)表于 2025-3-25 15:02:37 | 只看該作者
https://doi.org/10.1007/978-3-319-42863-5Delian problem; straightedge and compass; ruler and compass; GeoGebra; neusis; circle quadrature; duplicat
24#
發(fā)表于 2025-3-25 18:50:58 | 只看該作者
25#
發(fā)表于 2025-3-25 23:04:13 | 只看該作者
26#
發(fā)表于 2025-3-26 04:08:48 | 只看該作者
The Delian Problem,o stop the epidemic. The oracle answered that they should build a new cubic altar, with a size (= volume) double that of the existing one. The length of the edge should be determined by compass and straightedge methods only..Plato gave a solution with mechanical aids, for which numerous variants exi
27#
發(fā)表于 2025-3-26 05:35:13 | 只看該作者
Trisecting an angle, equal parts, by compass and straightedge methods then comes naturally..The question is simple enough and seems to suggest a simple solution. Here too, appearances are deceptive. It turns out that, like the duplication of the cube, the construction with compass and straightedge is impossible. We can
28#
發(fā)表于 2025-3-26 10:14:26 | 只看該作者
Squaring the circle,same area as a given figure. We still refer to the square root of a number, meaning we are looking for the length of the edge of a square with the given number as area..‘‘Squaring the circle’’ has become more or less a catch line for something which is impossible or unsolvable. Indeed, the problem c
29#
發(fā)表于 2025-3-26 15:29:08 | 只看該作者
Constructible numbers,e a consequence of Euclid’s first three postulates:.We will call a number . constructible if we can construct a line segment with length . in a finite number of steps..The axiom tells us that if we choose two different points . and ., then we actually turn the straight line into a ruler with . as un
30#
發(fā)表于 2025-3-26 19:44:49 | 只看該作者
The Cinderella of regular polygons, is not constructible using compass and straightedge methods. In what follows, we will guide you through the proof of this non-constructibility..We call this configuration Viète’s ladder. Viète used this configuration to calculate the edge of a regular heptagon.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 08:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼勒克县| 洛浦县| 大石桥市| 龙海市| 黄骅市| 深水埗区| 嵊州市| 奉化市| 怀远县| 沅陵县| 溧水县| 扎鲁特旗| 扎赉特旗| 寻乌县| 新津县| 登封市| 新蔡县| 宜丰县| 鄂尔多斯市| 凤台县| 毕节市| 教育| 荔波县| 泰兴市| 德阳市| 石景山区| 铁岭县| 江油市| 甘德县| 铜鼓县| 胶南市| 确山县| 仙桃市| 惠东县| 桑日县| 涿州市| 徐汇区| 四子王旗| 突泉县| 清流县| 通州市|