找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring Abstract Algebra With Mathematica?; Allen C. Hibbard,Kenneth M. Levasseur Textbook 1999 Springer Science+Business Media New York

[復(fù)制鏈接]
樓主: 矜持
21#
發(fā)表于 2025-3-25 03:56:46 | 只看該作者
Marx’ Method, Epistemology, and HumanismBefore attempting this lab, you should have completed Ring Lab 1. You shouldalso be familiar with cosets of normal subgroups.
22#
發(fā)表于 2025-3-25 10:30:07 | 只看該作者
23#
發(fā)表于 2025-3-25 15:10:58 | 只看該作者
Determining the Symmetry Group of a Given FigureThough not absolutely necessary, it would be useful if you completed Group Lab 1 before attempting this lab.
24#
發(fā)表于 2025-3-25 18:06:11 | 只看該作者
Is This a Group?To complete this lab, you should have already seen the definition of a group and become familiar with the basic group properties: being closed, having an identity, inverses, and associativity (and commutativity).
25#
發(fā)表于 2025-3-25 20:16:04 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:02 | 只看該作者
27#
發(fā)表于 2025-3-26 05:04:49 | 只看該作者
Cycling Through the GroupsOther than familiarity with the basic definitions related to a group, there are no prerequisites.
28#
發(fā)表于 2025-3-26 08:49:31 | 只看該作者
PermutationsTo complete this lab, you should have a good understanding of functions, including “right to left” composition. You do not need to complete any previous labs to attempt this one.
29#
發(fā)表于 2025-3-26 15:07:46 | 只看該作者
IsomorphismsTo complete this lab, you should be familiar enough with the basic properties of groups to be able to compare the various pairs of groups that you will be asked to examine. No previous labs are necessary.
30#
發(fā)表于 2025-3-26 17:09:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台湾省| 连南| 阿克苏市| 辉县市| 莱阳市| 河西区| 安阳市| 新乡县| 博客| 泰来县| 繁昌县| 依兰县| 威宁| 武山县| 光泽县| 布尔津县| 门头沟区| 永德县| 乐清市| 巴里| 蓬安县| 永春县| 松桃| 信丰县| 湖州市| 格尔木市| 秭归县| 神池县| 年辖:市辖区| 三穗县| 布尔津县| 永吉县| 隆回县| 麦盖提县| 仙居县| 穆棱市| 马尔康县| 惠来县| 溧水县| 深泽县| 巴马|