找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploratory Causal Analysis with Time Series Data; James M. McCracken Book 2016 Springer Nature Switzerland AG 2016

[復(fù)制鏈接]
查看: 37933|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:06:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Exploratory Causal Analysis with Time Series Data
編輯James M. McCracken
視頻videohttp://file.papertrans.cn/321/320233/320233.mp4
叢書名稱Synthesis Lectures on Data Mining and Knowledge Discovery
圖書封面Titlebook: Exploratory Causal Analysis with Time Series Data;  James M. McCracken Book 2016 Springer Nature Switzerland AG 2016
描述Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreemen
出版日期Book 2016
版次1
doihttps://doi.org/10.1007/978-3-031-01909-8
isbn_softcover978-3-031-00781-1
isbn_ebook978-3-031-01909-8Series ISSN 2151-0067 Series E-ISSN 2151-0075
issn_series 2151-0067
copyrightSpringer Nature Switzerland AG 2016
The information of publication is updating

書目名稱Exploratory Causal Analysis with Time Series Data影響因子(影響力)




書目名稱Exploratory Causal Analysis with Time Series Data影響因子(影響力)學(xué)科排名




書目名稱Exploratory Causal Analysis with Time Series Data網(wǎng)絡(luò)公開度




書目名稱Exploratory Causal Analysis with Time Series Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Exploratory Causal Analysis with Time Series Data被引頻次




書目名稱Exploratory Causal Analysis with Time Series Data被引頻次學(xué)科排名




書目名稱Exploratory Causal Analysis with Time Series Data年度引用




書目名稱Exploratory Causal Analysis with Time Series Data年度引用學(xué)科排名




書目名稱Exploratory Causal Analysis with Time Series Data讀者反饋




書目名稱Exploratory Causal Analysis with Time Series Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:21:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:22:20 | 只看該作者
Absatzreserven müssen erkennbar seinof-date before it is ever printed. Most popular time series tools, however, appear to fall into one of five broad categories, Granger causality, information-theoretic causality, state space reconstruction causality, correlation causality, or penchant causality. These categories are defined by both t
地板
發(fā)表于 2025-3-22 06:08:27 | 只看該作者
https://doi.org/10.1007/978-3-322-89262-1 a way of thinking about the data analysis) rather than the use of any specific technique. This work will focus on performing exploratory causal analysis using a report of five different time series causality tools, one from each category presented in Section 3.
5#
發(fā)表于 2025-3-22 10:29:52 | 只看該作者
978-3-031-00781-1Springer Nature Switzerland AG 2016
6#
發(fā)表于 2025-3-22 13:23:30 | 只看該作者
7#
發(fā)表于 2025-3-22 20:10:19 | 只看該作者
https://doi.org/10.1007/978-3-663-07286-7conclusions from a collection of data points. Gerald van Belle outlines data analysis as four questions in what he calls the “Four Questions Rule of Thumb” [2] (distilled from Fisher [3]), “Any statistical treatment must address the following questions:.These items are each addressed by one of the three primary components of data analysis,
8#
發(fā)表于 2025-3-22 22:28:53 | 只看該作者
9#
發(fā)表于 2025-3-23 02:20:22 | 只看該作者
Introduction,conclusions from a collection of data points. Gerald van Belle outlines data analysis as four questions in what he calls the “Four Questions Rule of Thumb” [2] (distilled from Fisher [3]), “Any statistical treatment must address the following questions:.These items are each addressed by one of the three primary components of data analysis,
10#
發(fā)表于 2025-3-23 07:55:38 | 只看該作者
Exploratory Causal Analysis, a way of thinking about the data analysis) rather than the use of any specific technique. This work will focus on performing exploratory causal analysis using a report of five different time series causality tools, one from each category presented in Section 3.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萝北县| 普兰店市| 和平县| 翼城县| 深州市| 始兴县| 五原县| 来宾市| 蒲城县| 静安区| 福建省| 宜君县| 伽师县| 沁源县| 锡林浩特市| 望都县| 普兰店市| 都安| 珲春市| 桦甸市| 吉林市| 洛川县| 南京市| 日土县| 陆河县| 抚宁县| 灵山县| 鄂托克旗| 温泉县| 罗山县| 都兰县| 峡江县| 合水县| 崇礼县| 邳州市| 鹤岗市| 准格尔旗| 阜南县| 广安市| 鄂伦春自治旗| 兴业县|