找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extreme Value Theory-Based Methods for Visual Recognition; Walter J. Scheirer Book 2017 Springer Nature Switzerland AG 2017

[復(fù)制鏈接]
查看: 30825|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:47:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Extreme Value Theory-Based Methods for Visual Recognition
編輯Walter J. Scheirer
視頻videohttp://file.papertrans.cn/321/320066/320066.mp4
叢書名稱Synthesis Lectures on Computer Vision
圖書封面Titlebook: Extreme Value Theory-Based Methods for Visual Recognition;  Walter J. Scheirer Book 2017 Springer Nature Switzerland AG 2017
描述A common feature of many approaches to modeling sensory statistics is an emphasis on capturing the "average." From early representations in the brain, to highly abstracted class categories in machine learning for classification tasks, central-tendency models based on the Gaussian distribution are a seemingly natural and obvious choice for modeling sensory data. However, insights from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially focusing representational resources on the extremes of the distribution of sensory inputs. The notion of treating extrema near a decision boundary as features is not necessarily new, but a comprehensive statistical theory of recognition based on extrema is only now just emerging in the computer vision literature. This book begins by introducing the statistical Extreme Value Theory (EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that distributions near decision boundaries form a more powerful model for recognition tasks by focusing coding resources on data that are arguably the most diagnostic features. EVT has several important properties: strong statistical grounding,
出版日期Book 2017
版次1
doihttps://doi.org/10.1007/978-3-031-01817-6
isbn_softcover978-3-031-00689-0
isbn_ebook978-3-031-01817-6Series ISSN 2153-1056 Series E-ISSN 2153-1064
issn_series 2153-1056
copyrightSpringer Nature Switzerland AG 2017
The information of publication is updating

書目名稱Extreme Value Theory-Based Methods for Visual Recognition影響因子(影響力)




書目名稱Extreme Value Theory-Based Methods for Visual Recognition影響因子(影響力)學(xué)科排名




書目名稱Extreme Value Theory-Based Methods for Visual Recognition網(wǎng)絡(luò)公開度




書目名稱Extreme Value Theory-Based Methods for Visual Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Extreme Value Theory-Based Methods for Visual Recognition被引頻次




書目名稱Extreme Value Theory-Based Methods for Visual Recognition被引頻次學(xué)科排名




書目名稱Extreme Value Theory-Based Methods for Visual Recognition年度引用




書目名稱Extreme Value Theory-Based Methods for Visual Recognition年度引用學(xué)科排名




書目名稱Extreme Value Theory-Based Methods for Visual Recognition讀者反饋




書目名稱Extreme Value Theory-Based Methods for Visual Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:00:05 | 只看該作者
Extrema and Visual Recognition,eCun et al. [2015]), as well as a rekindled interest in perceptual models with explicit probabilistic interpretations (e.g., Berkes et al. [2011], Jern and Kemp [2013]). However, while such ideas may have revolutionized the way that we think about early sensory input, we have made little headway tow
地板
發(fā)表于 2025-3-22 06:49:04 | 只看該作者
Post-recognition Score Analysis, score is and why it is important for decision making. Further, we can model distributions of scores to determine if they were generated by a matching or non-matching process. Once we understand this basic model, we can then extend it to other modes such as score normalization and calibration (see C
5#
發(fā)表于 2025-3-22 10:15:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:32:14 | 只看該作者
Calibration of Supervised Machine Learning Algorithms,VM, Logistic Regression, Random Forests, Boosting, and the Softmax function, among many other algorithms. In this chapter, we will mainly focus on SVM, but we will also take a look at a calibration process for a sparse representation-based classifier, and one for the Softmax function used in conjunc
7#
發(fā)表于 2025-3-22 19:59:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:38:59 | 只看該作者
9#
發(fā)表于 2025-3-23 05:25:29 | 只看該作者
Responses to Institutional Disrespect,eCun et al. [2015]), as well as a rekindled interest in perceptual models with explicit probabilistic interpretations (e.g., Berkes et al. [2011], Jern and Kemp [2013]). However, while such ideas may have revolutionized the way that we think about early sensory input, we have made little headway tow
10#
發(fā)表于 2025-3-23 07:34:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广西| 德格县| 伊川县| 定日县| 南雄市| 拉孜县| 布拖县| 祥云县| 峨眉山市| 吉木萨尔县| 朔州市| 秀山| 平顺县| 潞西市| 饶阳县| 壶关县| 古丈县| 郎溪县| 大宁县| 额尔古纳市| 镇坪县| 长乐市| 武山县| 明光市| 南华县| 江阴市| 金堂县| 故城县| 呼伦贝尔市| 濮阳市| 辰溪县| 织金县| 南开区| 五大连池市| 宝鸡市| 英吉沙县| 平谷区| 阳高县| 嘉兴市| 闻喜县| 井陉县|