找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extreme Learning Machines 2013: Algorithms and Applications; Fuchen Sun,Kar-Ann Toh,Kezhi Mao Book 2014 Springer International Publishing

[復(fù)制鏈接]
樓主: DEIGN
11#
發(fā)表于 2025-3-23 10:05:29 | 只看該作者
Demographic Attributes Prediction Using Extreme Learning Machine,havior targeting. Although a variety of subjects are involved with demographic attributes prediction, e.g. there are requirements to recognize and predict demography from psychology, but the traditional approach is dynamic modeling on specified field and distinctive datasets. However, dynamic modeli
12#
發(fā)表于 2025-3-23 15:48:28 | 只看該作者
13#
發(fā)表于 2025-3-23 18:14:15 | 只看該作者
14#
發(fā)表于 2025-3-24 00:56:25 | 只看該作者
Indoor Location Estimation Based on Local Magnetic Field via Hybrid Learning,measurements for a single location and the relative obvious difference in most of locations. Under this phenomenon, a hybrid learning method based on the local magnetic field measurements is proposed. (1) Kalman filter is firstly utilized to smooth the initial samples in order to obtain the stable d
15#
發(fā)表于 2025-3-24 04:13:55 | 只看該作者
A Novel Scene Based Robust Video Watermarking Scheme in DWT Domain Using Extreme Learning Machine,n using a newly developed SLFN commonly known as Extreme Learning Machine (ELM). The embedding is carried out by using scene detection. The LL4 sub-band coefficients of frames constitute the dataset to train the ELM in millisecond time. The output of the ELM is used to embed a binary watermark in th
16#
發(fā)表于 2025-3-24 06:31:33 | 只看該作者
Zentrale Ergebnisse und Ausblick, of celestial bodies but with the environmental influences such as atmospheric pressure, wind, rainfall and ice. The harmonic analysis method is used to represent the influences of celestial bodies, while the SDW-ELM is used to represent the influences of meteorological factors and other unmodeled f
17#
發(fā)表于 2025-3-24 11:55:24 | 只看該作者
Jan-Hendrik Passoth,Werner Rammertsolid (SS) and total organic carbon (TOC) selected from the correlation analysis of the 23?monthly water variables were included, with 8?years (2001–2008) data for training and the most recent 3?years (2009–2011) for testing. The modeling results showed that the prediction and forecast (based on dat
18#
發(fā)表于 2025-3-24 18:48:40 | 只看該作者
19#
發(fā)表于 2025-3-24 20:19:45 | 只看該作者
20#
發(fā)表于 2025-3-25 01:24:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天水市| 阜新| 淮南市| 永修县| 石林| 布拖县| 西峡县| 科尔| 科技| 邹城市| 华坪县| 隆林| 克东县| 高要市| 杭锦后旗| 中西区| 右玉县| 泽库县| 台安县| 射阳县| 罗平县| 南部县| 漯河市| 如东县| 布尔津县| 江孜县| 永州市| 常山县| 比如县| 临邑县| 本溪| 尤溪县| 和政县| 京山县| 江城| 随州市| 济源市| 叶城县| 交城县| 大石桥市| 沂南县|