找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extensions and Absolutes of Hausdorff Spaces; Jack R. Porter,R. Grant Woods Textbook 1988 Springer-Verlag New York Inc. 1988 Compactificat

[復制鏈接]
樓主: Braggart
21#
發(fā)表于 2025-3-25 06:06:55 | 只看該作者
22#
發(fā)表于 2025-3-25 11:33:19 | 只看該作者
H-closed Extensions,xtensions of a space. We then construct and study the Fomin extension .X of an arbitrary space X, the Banaschewski-Fomin-?anin extension μX of a semiregular space X, and one-point H-closed extensions of locally H-closed spaces. Next we consider the interrelationships among certain partitions of .XX
23#
發(fā)表于 2025-3-25 15:05:27 | 只看該作者
24#
發(fā)表于 2025-3-25 18:28:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:10 | 只看該作者
26#
發(fā)表于 2025-3-26 01:43:27 | 只看該作者
Topological Background,metimes do not appear in a typical graduate level course in point-set topology. A familiarity with these ideas is necessary to what follows, so a detailed discussion of them is given here. The topologically sophisticated reader may wish to skip this material and to refer to it when the need arises.
27#
發(fā)表于 2025-3-26 04:38:46 | 只看該作者
H-closed Extensions,egular space X, and one-point H-closed extensions of locally H-closed spaces. Next we consider the interrelationships among certain partitions of .XX and the poset structure of .(X). We characterize and study those f ∈ C(X,Y) that can be extended to a function .f ∈ C(.X,.Y). The chapter concludes with the study of Θ-equivalent H-closed extensions.
28#
發(fā)表于 2025-3-26 08:48:04 | 只看該作者
Fly-by-Wire/Light Demonstrators,act, zero-dimensional extensions of a zero-dimensional space. In the final section of the chapter, we study certain “nice” extensions of an arbitrary (Hausdorff) space, namely the H-closed extensions.
29#
發(fā)表于 2025-3-26 13:49:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:54:04 | 只看該作者
Extensions of Spaces,act, zero-dimensional extensions of a zero-dimensional space. In the final section of the chapter, we study certain “nice” extensions of an arbitrary (Hausdorff) space, namely the H-closed extensions.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南和县| 阿巴嘎旗| 姜堰市| 白玉县| 简阳市| 伊吾县| 和平县| 元朗区| 马公市| 象山县| 郸城县| 铅山县| 都匀市| 望奎县| 晋城| 丽水市| 汕尾市| 南阳市| 阿鲁科尔沁旗| 林州市| 郸城县| 镇康县| 余姚市| 兴海县| 水城县| 金门县| 客服| 启东市| 滦南县| 措勤县| 永城市| 乌兰浩特市| 扶绥县| 屏南县| 正镶白旗| 泾川县| 永川市| 石家庄市| 永和县| 肥西县| 高安市|