找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extensions and Absolutes of Hausdorff Spaces; Jack R. Porter,R. Grant Woods Textbook 1988 Springer-Verlag New York Inc. 1988 Compactificat

[復(fù)制鏈接]
樓主: Braggart
21#
發(fā)表于 2025-3-25 06:06:55 | 只看該作者
22#
發(fā)表于 2025-3-25 11:33:19 | 只看該作者
H-closed Extensions,xtensions of a space. We then construct and study the Fomin extension .X of an arbitrary space X, the Banaschewski-Fomin-?anin extension μX of a semiregular space X, and one-point H-closed extensions of locally H-closed spaces. Next we consider the interrelationships among certain partitions of .XX
23#
發(fā)表于 2025-3-25 15:05:27 | 只看該作者
24#
發(fā)表于 2025-3-25 18:28:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:10 | 只看該作者
26#
發(fā)表于 2025-3-26 01:43:27 | 只看該作者
Topological Background,metimes do not appear in a typical graduate level course in point-set topology. A familiarity with these ideas is necessary to what follows, so a detailed discussion of them is given here. The topologically sophisticated reader may wish to skip this material and to refer to it when the need arises.
27#
發(fā)表于 2025-3-26 04:38:46 | 只看該作者
H-closed Extensions,egular space X, and one-point H-closed extensions of locally H-closed spaces. Next we consider the interrelationships among certain partitions of .XX and the poset structure of .(X). We characterize and study those f ∈ C(X,Y) that can be extended to a function .f ∈ C(.X,.Y). The chapter concludes with the study of Θ-equivalent H-closed extensions.
28#
發(fā)表于 2025-3-26 08:48:04 | 只看該作者
Fly-by-Wire/Light Demonstrators,act, zero-dimensional extensions of a zero-dimensional space. In the final section of the chapter, we study certain “nice” extensions of an arbitrary (Hausdorff) space, namely the H-closed extensions.
29#
發(fā)表于 2025-3-26 13:49:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:54:04 | 只看該作者
Extensions of Spaces,act, zero-dimensional extensions of a zero-dimensional space. In the final section of the chapter, we study certain “nice” extensions of an arbitrary (Hausdorff) space, namely the H-closed extensions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深圳市| 翁牛特旗| 夏邑县| 阿克陶县| 怀仁县| 盱眙县| 博乐市| 惠东县| 南部县| 萨嘎县| 宜宾县| 密云县| 娄底市| 游戏| 十堰市| 鄂托克前旗| 徐汇区| 阿勒泰市| 江陵县| 沐川县| 金昌市| 遂昌县| 盐边县| 财经| 睢宁县| 周至县| 增城市| 施秉县| 稷山县| 桐柏县| 南部县| 当阳市| 潢川县| 长泰县| 长葛市| 株洲市| 邛崃市| 丹棱县| 中牟县| 资溪县| 十堰市|