找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extending the Scalability of Linkage Learning Genetic Algorithms; Theory & Practice Ying-ping Chen Book 2006 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
查看: 19895|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:30:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms
副標(biāo)題Theory & Practice
編輯Ying-ping Chen
視頻videohttp://file.papertrans.cn/320/319843/319843.mp4
概述Advances our understanding of the linkage learning genetic algorithm and demonstrates potential research directions.Includes supplementary material:
叢書(shū)名稱(chēng)Studies in Fuzziness and Soft Computing
圖書(shū)封面Titlebook: Extending the Scalability of Linkage Learning Genetic Algorithms; Theory & Practice Ying-ping Chen Book 2006 Springer-Verlag Berlin Heidelb
描述.Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, most GAs employed in practice nowadays are unable to learn genetic linkage and suffer from the linkage problem. The linkage learning genetic algorithm (LLGA) was proposed to tackle the linkage problem with several specially designed mechanisms. While the LLGA performs much better on badly scaled problems than simple GAs, it does not work well on uniformly scaled problems as other competent GAs. Therefore, we need to understand why it is so and need to know how to design a better LLGA or whether there are certain limits of such a linkage learning process. This book aims to gain better understanding of the LLGA in theory and to improve the LLGA‘s performance in practice. It starts with a survey of the existing genetic linkage learning techniques and describes the steps and approaches taken to tackle the research topics, including using promoters, developing the convergence time model, and adopting subchromosomes. .
出版日期Book 2006
關(guān)鍵詞Chromosome Representation; Genetic Algorithms; Genetic Linkage Learning Techniques; Soft Computing; algo
版次1
doihttps://doi.org/10.1007/b102053
isbn_softcover978-3-642-06671-9
isbn_ebook978-3-540-32413-3Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms影響因子(影響力)




書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms被引頻次




書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms被引頻次學(xué)科排名




書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms年度引用




書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms年度引用學(xué)科排名




書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms讀者反饋




書(shū)目名稱(chēng)Extending the Scalability of Linkage Learning Genetic Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:58:23 | 只看該作者
地板
發(fā)表于 2025-3-22 08:10:25 | 只看該作者
Springer Series in Materials Scienceich refers to the process of building-block formation, was less successful on problems with uniformly scaled building blocks, and this chapter seeks to better understand why this was so and to correct the deficiency by adopting a coding mechanism, ., that exists in genetics.
5#
發(fā)表于 2025-3-22 08:44:39 | 只看該作者
David M. Cwiertny,Michelle M. Schererm in theory. Particularly, a convergence time model is constructed to explain why the linkage learning genetic algorithm needs exponentially growing computational time to solve uniformly scaled problems [15].
6#
發(fā)表于 2025-3-22 14:20:16 | 只看該作者
Introduction,main knowledge of the problem such that the genes on chromosomes can be correctly arranged in advance. One way to alleviate this burden of genetic algorithm users is to make the algorithm capable of adapting and learning genetic linkage by itself.
7#
發(fā)表于 2025-3-22 18:26:53 | 只看該作者
Genetic Linkage Learning Techniques,hard problems quickly, accurately, and reliably. Such . genetic and evolutionary algorithms take the problems that were intractable for the first-generation genetic algorithms and render them practical in polynomial time (oftentimes, in subquadratic time) [32, 72–74]
8#
發(fā)表于 2025-3-22 22:53:19 | 只看該作者
9#
發(fā)表于 2025-3-23 03:04:18 | 只看該作者
10#
發(fā)表于 2025-3-23 09:01:45 | 只看該作者
Convergence Time for the Linkage Learning Genetic Algorithm,m in theory. Particularly, a convergence time model is constructed to explain why the linkage learning genetic algorithm needs exponentially growing computational time to solve uniformly scaled problems [15].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪雅县| 无极县| 邹平县| 临漳县| 南岸区| 海城市| 睢宁县| 金堂县| 武城县| 博白县| 深圳市| 永康市| 增城市| 崇文区| 建瓯市| 清丰县| 康保县| 饶平县| 五常市| 西安市| 浦城县| 绵阳市| 维西| 常德市| 马公市| 丰县| 娄底市| 永胜县| 新乐市| 满洲里市| 宝鸡市| 黄龙县| 莆田市| 封丘县| 蒙阴县| 长垣县| 本溪市| 积石山| 博野县| 朝阳区| 云龙县|