找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts Spring 2014; Hamiltonian Systems Montserrat Corbera,Josep Maria Cors,Andrei Korobei Conference proceedings 2015 Springe

[復制鏈接]
樓主: 誤解
21#
發(fā)表于 2025-3-25 06:50:24 | 只看該作者
On the Force Fields Which Are Homogeneous of Degree ?3. He also noticed that the addition of a force in 1∕.. to another force results in a kind of precession of the orbit, see?[14, Book 1,?Proposition?44]. In 1842, Jacobi?[8] gave general results about the force fields which are homogeneous of degree ? 3 and derived from a potential. More recently, Mon
22#
發(fā)表于 2025-3-25 07:38:22 | 只看該作者
23#
發(fā)表于 2025-3-25 15:26:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:53:43 | 只看該作者
25#
發(fā)表于 2025-3-25 21:08:05 | 只看該作者
26#
發(fā)表于 2025-3-26 02:07:26 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:06 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:39 | 只看該作者
29#
發(fā)表于 2025-3-26 15:38:21 | 只看該作者
Generalized Discrete Nonlinear Schr?dinger as a Normal Form at the Thermodynamic Limit for the Klein degrees of freedom and, in particular, in the thermodynamic limit. Indeed, motivated by the problems arising in the foundations of Statistical Mechanics, it is relevant to consider large systems (e.g., for a model of a crystal the number of particles should be of the order of the Avogadro number) w
30#
發(fā)表于 2025-3-26 17:07:06 | 只看該作者
Central Configurations of an Isosceles Trapezoidal Five-Body Problem, we study the central configuration of the isosceles trapezoidal five-body problem where four of the masses are placed at the vertices of the isosceles trapezoid and the fifth body can take various positions on the axis of symmetry. We identify regions in the phase space where it is possible to cho
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
磐石市| 左权县| 西昌市| 大石桥市| 察隅县| 东明县| 金塔县| 合山市| 江山市| 四川省| 麻江县| 墨脱县| 丰都县| 荔波县| 丹江口市| 灌阳县| 佛山市| 东明县| 神池县| 昌江| 辛集市| 黎平县| 凉城县| 米泉市| 增城市| 区。| 来宾市| 庄浪县| 五原县| 灵璧县| 修文县| 朔州市| 稻城县| 临江市| 青浦区| 利津县| 长寿区| 彩票| 高邮市| 菏泽市| 淮阳县|