找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts MWCAPDE 2023; Methusalem Workshop Michael Ruzhansky,Berikbol Torebek Conference proceedings 2024 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: 喜悅
31#
發(fā)表于 2025-3-27 00:41:37 | 只看該作者
Oreste Acuto,Marina Fabbi,Ellis L. Reinherzn’s difference operator. Well-posedness results are presented in appropriate Sobolev-type spaces. In particular, we show that the heat equation generated by Rubin’s difference operator have unique solutions. We even show that these solutions can be represented by explicit formulas. The presentation
32#
發(fā)表于 2025-3-27 01:39:12 | 只看該作者
Arthur A. Vandenbark,Nicole E. Culbertsonuation known in hydrodynamics. Namely, instead of the initial condition, the condition . is proposed, where . is an arbitrary real number. Note that if ., then we get the backward problem, which is ill-posed. The main goal of this part of the work is to study the influence of parameter . on the corr
33#
發(fā)表于 2025-3-27 06:21:43 | 只看該作者
34#
發(fā)表于 2025-3-27 11:49:11 | 只看該作者
Puneet Raman,Gehan Botrus,Tanios Bekaii-Saabriable viscosity in the two-dimensional unbounded domain are considered. An appropriate parametrix is used to reduce this problem to some direct segregated boundary-domain integral equations (BDIEs). The equivalence of the original BVP and the obtained BDIEs are analysed in weighted Sobolev spaces.
35#
發(fā)表于 2025-3-27 14:45:18 | 只看該作者
Immunglobuline in der klinischen Neurologieauchy data on the entire boundary. The proof of the main result is based on the representation of the boundary conditions of the Newton (volume) potential of the multidimensional Laplace equation, which was obtained in the work (Kal’menov and Suragan, Dokl Math 80(2):646–649, 2009).
36#
發(fā)表于 2025-3-27 20:15:50 | 只看該作者
37#
發(fā)表于 2025-3-27 23:54:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:28:22 | 只看該作者
On ,-Analogue of the One-Dimensional Non-Homogeneous Heat Equationted by Rubin’s difference operator have unique solutions. We even show that these solutions can be represented by explicit formulas. The presentation is based on the joint work with M. Ruzhansky and S. Shaimardan.
39#
發(fā)表于 2025-3-28 08:38:13 | 只看該作者
40#
發(fā)表于 2025-3-28 10:53:18 | 只看該作者
Conference proceedings 2024 mainly consist of scientific results on classical analysis and problems of PDEs. In particular, results on harmonic analysis, functional spaces, functional inequalities, inverse problems, non-local PDEs, non-classical problems of PDEs, integro-differential equations, hypoelliptic operators, pseudo-differential calculus, and others are given..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴彦淖尔市| 澄迈县| 昆山市| 公安县| 旌德县| 城口县| 昭平县| 台东县| 滨海县| 巫溪县| 西充县| 石阡县| 宁蒗| 桦川县| 博兴县| 增城市| 夏津县| 朝阳市| 密山市| 哈尔滨市| 吉林市| 平定县| 西丰县| 嘉黎县| 井研县| 余江县| 锡林浩特市| 麻阳| 长沙市| 固安县| 平果县| 巴林右旗| 汾阳市| 红安县| 盐山县| 将乐县| 安宁市| 武强县| 吴江市| 响水县| 阳曲县|