找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts GEOMVAP 2019; Geometry, Topology, Maria Alberich-Carrami?ana,Guillem Blanco,Eva Mira Conference proceedings 2021 The Ed

[復制鏈接]
樓主: DUCT
31#
發(fā)表于 2025-3-26 22:44:21 | 只看該作者
32#
發(fā)表于 2025-3-27 03:06:19 | 只看該作者
Generating Embeddable Matrices Whose Principal Logarithm is Not a Markov Generator,Several results seem to point out that the embeddability of a Markov process may be determined by checking whether the principal logarithm of its transition matrix is a rate matrix. In this note, we provide a constructive method to produce a positive measure subspace of Markov matrices for which this is not true.
33#
發(fā)表于 2025-3-27 06:42:07 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:36 | 只看該作者
35#
發(fā)表于 2025-3-27 17:03:35 | 只看該作者
36#
發(fā)表于 2025-3-27 20:41:44 | 只看該作者
37#
發(fā)表于 2025-3-28 01:25:39 | 只看該作者
Dimension Formulas for the Cohomology of Arithmetic Groups,In this extended abstract we will describe a method to study the dimension of the cohomology of an arithmetic group. We will mainly use the Borel-Serre compactification, the theory of cuspidal and Eisenstein cohomology and the Euler characteristic.
38#
發(fā)表于 2025-3-28 03:12:21 | 只看該作者
Do Overtwisted Contact Manifolds Admit Infinitely Many Periodic Reeb Orbits?,In this note we discuss an approach to prove existence of infinitely many periodic Reeb orbits in overtwisted contact manifolds. The result is a combination of a plug-like construction and an adaptation of Hofer’s .-holomorphic curve techniques in the case to .-contact manifold.
39#
發(fā)表于 2025-3-28 09:39:26 | 只看該作者
40#
發(fā)表于 2025-3-28 14:01:19 | 只看該作者
Geometry of Non-holonomic Distributions,We consider a non integrable regular distribution . in a Riemannian manifold (.,?.). Using the Levi-Civita connection in . we extend the geometric notions of fundamental forms, curvature and geodesic curves from submanifolds of (.,?.) to the distribution . and characterize the totally geodesic distributions in several ways.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 22:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
韶山市| 新丰县| 广南县| 潍坊市| 来安县| 广宁县| 祁东县| 达日县| 西宁市| 虞城县| 时尚| 保定市| 额敏县| 城口县| 达尔| 乌拉特前旗| 乐业县| 武城县| 北宁市| 贺州市| 格尔木市| 兴国县| 旬邑县| 双辽市| 西林县| 沅江市| 临夏县| 慈溪市| 宜昌市| 保山市| 凌海市| 乾安县| 大同县| 永和县| 海盐县| 松阳县| 江西省| 天台县| 湘乡市| 宁化县| 吉安县|