找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts GEOMVAP 2019; Geometry, Topology, Maria Alberich-Carrami?ana,Guillem Blanco,Eva Mira Conference proceedings 2021 The Ed

[復(fù)制鏈接]
樓主: DUCT
31#
發(fā)表于 2025-3-26 22:44:21 | 只看該作者
32#
發(fā)表于 2025-3-27 03:06:19 | 只看該作者
Generating Embeddable Matrices Whose Principal Logarithm is Not a Markov Generator,Several results seem to point out that the embeddability of a Markov process may be determined by checking whether the principal logarithm of its transition matrix is a rate matrix. In this note, we provide a constructive method to produce a positive measure subspace of Markov matrices for which this is not true.
33#
發(fā)表于 2025-3-27 06:42:07 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:36 | 只看該作者
35#
發(fā)表于 2025-3-27 17:03:35 | 只看該作者
36#
發(fā)表于 2025-3-27 20:41:44 | 只看該作者
37#
發(fā)表于 2025-3-28 01:25:39 | 只看該作者
Dimension Formulas for the Cohomology of Arithmetic Groups,In this extended abstract we will describe a method to study the dimension of the cohomology of an arithmetic group. We will mainly use the Borel-Serre compactification, the theory of cuspidal and Eisenstein cohomology and the Euler characteristic.
38#
發(fā)表于 2025-3-28 03:12:21 | 只看該作者
Do Overtwisted Contact Manifolds Admit Infinitely Many Periodic Reeb Orbits?,In this note we discuss an approach to prove existence of infinitely many periodic Reeb orbits in overtwisted contact manifolds. The result is a combination of a plug-like construction and an adaptation of Hofer’s .-holomorphic curve techniques in the case to .-contact manifold.
39#
發(fā)表于 2025-3-28 09:39:26 | 只看該作者
40#
發(fā)表于 2025-3-28 14:01:19 | 只看該作者
Geometry of Non-holonomic Distributions,We consider a non integrable regular distribution . in a Riemannian manifold (.,?.). Using the Levi-Civita connection in . we extend the geometric notions of fundamental forms, curvature and geodesic curves from submanifolds of (.,?.) to the distribution . and characterize the totally geodesic distributions in several ways.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 01:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永平县| 延吉市| 钟祥市| 柞水县| 那坡县| 沈阳市| 白水县| 屏边| 北川| 武川县| 梁山县| 中方县| 巩义市| 肥城市| 河间市| 宝清县| 辉南县| 临西县| 卓尼县| 奉节县| 牙克石市| 错那县| 星子县| 四子王旗| 云梦县| 安平县| 房产| 平顶山市| 巨鹿县| 睢宁县| 咸宁市| 中西区| 定边县| 当雄县| 庐江县| 威海市| 筠连县| 乌兰县| 舟曲县| 海原县| 尚志市|