找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts February 2016; Positivity and Valua Maria Alberich-Carrami?ana,Carlos Galindo,Joaquim Conference proceedings 2018 Sprin

[復(fù)制鏈接]
樓主: 使無(wú)罪
41#
發(fā)表于 2025-3-28 17:24:39 | 只看該作者
42#
發(fā)表于 2025-3-28 21:22:50 | 只看該作者
,Notes on Local Positivity and Newton–Okounkov Bodies,We explore the notion of local numerical equivalence in higher dimension and its relationship with Newton–Okounkov bodies with respect to flags centered at a given point.
43#
發(fā)表于 2025-3-28 22:59:51 | 只看該作者
,Newton–Okounkov Bodies and Reified Valuations of Higher Rank,We study the shape change of the Newton–Okounkov body of a fixed divisor . with respect to a valuation . moving in a suitable space of (higher-rank) valuations.
44#
發(fā)表于 2025-3-29 06:41:19 | 只看該作者
45#
發(fā)表于 2025-3-29 10:30:03 | 只看該作者
46#
發(fā)表于 2025-3-29 11:57:18 | 只看該作者
47#
發(fā)表于 2025-3-29 17:02:28 | 只看該作者
,Semigroup and Poincaré Series for Divisorial Valuations,the Poincaré series associated to ., assuming that . has a finite generating sequence. First, if . is infinite, this semigroup is finitely generated. Secondly, for any ., the Poincaré series associated to . is a rational function whose denominator can be expressed in terms of the valuation vectors of the elements in the generating sequence.
48#
發(fā)表于 2025-3-29 21:22:19 | 只看該作者
On the Containment Hierarchy for Simplicial Ideals,etry. Our considerations are mainly inspired by results of Bocci–Harbourne in (Bocci and Harbourne. Proc. Am. Math. Soc. 138, 1175–1190 (2010) [.]). The results presented on a poster are from (Lampa-Baczyńska and Malara. J. Pure Appl. Algeb. 219, 5402–5412 (2015) [.]), the common paper of both authors.
49#
發(fā)表于 2025-3-30 03:38:55 | 只看該作者
50#
發(fā)表于 2025-3-30 05:59:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
珲春市| 芮城县| 樟树市| 中西区| 高雄县| 宁武县| 周口市| 湖州市| 远安县| 杨浦区| 龙州县| 兴宁市| 上思县| 衡山县| 怀化市| 新泰市| 射洪县| 马山县| 宁河县| 通江县| 南开区| 邹城市| 津市市| 东乡| 阜阳市| 建宁县| 韶关市| 惠水县| 民乐县| 濉溪县| 平舆县| 涪陵区| 商都县| 庆元县| 赣榆县| 呼伦贝尔市| 阿瓦提县| 奎屯市| 姚安县| 贵州省| 黄龙县|