找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts Fall 2019; Spaces of Analytic F Evgeny Abakumov,Anton Baranov,Joaquim Ortega-Cerdà Conference proceedings 2021 The Edito

[復(fù)制鏈接]
樓主: 麻煩
31#
發(fā)表于 2025-3-26 22:20:19 | 只看該作者
Evgeny Abakumov,Anton Baranov,Joaquim Ortega-CerdàCovers a wide spectrum of topics in contemporary analysis.Opens new perspectives for future research in the domain
32#
發(fā)表于 2025-3-27 03:24:29 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/e/image/319793.jpg
33#
發(fā)表于 2025-3-27 08:37:26 | 只看該作者
The Politics of the Roma in Italy and Spain, the corresponding family ., ., of Clark measures on .. For . and an inner function ., we show that the property . is directly related to the membership of an appropriate function in the de Branges–Rovnyak space ..
34#
發(fā)表于 2025-3-27 10:26:05 | 只看該作者
35#
發(fā)表于 2025-3-27 15:56:30 | 只看該作者
https://doi.org/10.1007/978-3-658-12061-0egral. We revisit this area by giving a description of canonical Hamiltonian systems whose spectral measures have logarithmic integral converging over the real line. Our result can be viewed as a spectral version of the classical Szeg? theorem in the theory of polynomials orthogonal on the unit circ
36#
發(fā)表于 2025-3-27 18:58:55 | 只看該作者
37#
發(fā)表于 2025-3-27 22:32:19 | 只看該作者
Immigration and the Challenge of Education ., with conjugate analytic symbols ., acting on .. We give a lower and an upper estimates of the trace of ., where . is a convex function . Next, we give asymptotic estimates of their singular values. We also consider the similar problem for Toeplitz operators.
38#
發(fā)表于 2025-3-28 03:51:39 | 只看該作者
39#
發(fā)表于 2025-3-28 10:03:43 | 只看該作者
40#
發(fā)表于 2025-3-28 14:24:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福泉市| 肥乡县| 日照市| 微山县| 长岭县| 武胜县| 会同县| 元氏县| 南木林县| 屏南县| 新田县| 虎林市| 麟游县| 丹东市| 嘉义市| 松滋市| 宾川县| 观塘区| 桐庐县| 渭南市| 岳普湖县| 中卫市| 周宁县| 明水县| 北碚区| 贵州省| 和田县| 安宁市| 白河县| 乌什县| 襄垣县| 安溪县| 会同县| 唐河县| 广州市| 尉氏县| 开封市| 万荣县| 广平县| 旺苍县| 察隅县|