找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts EuroComb 2021; European Conference Jaroslav Ne?et?il,Guillem Perarnau,Oriol Serra Conference proceedings 2021 The Edito

[復(fù)制鏈接]
樓主: 不友善
51#
發(fā)表于 2025-3-30 08:24:51 | 只看該作者
2297-0215 s in this conference.Collects the extended abstracts of the .This book collects the extended abstracts of the accepted contributions to EuroComb21. A similar book is published at every edition of EuroComb (every two years since 2001) collecting the most recent advances in combinatorics, graph theory
52#
發(fā)表于 2025-3-30 15:04:39 | 只看該作者
53#
發(fā)表于 2025-3-30 16:38:16 | 只看該作者
The True, the Good and the Beautiful,sibly depending on .). We first consider the case when . is a random geometric graph, and obtain an asymptotically optimal result. We then consider the case when . is a random regular graph, and obtain different results depending on the regularity.
54#
發(fā)表于 2025-3-30 21:20:08 | 只看該作者
55#
發(fā)表于 2025-3-31 01:58:51 | 只看該作者
56#
發(fā)表于 2025-3-31 08:32:50 | 只看該作者
https://doi.org/10.1007/978-3-476-99688-6f this result by presenting another construction . and showing that any .-vertex, connected, .-uniform hypergraph without a Berge-path of length ., that contains more than . hyperedges must be a subhypergraph of the extremal hypergraph ., provided . is large enough compared to ..
57#
發(fā)表于 2025-3-31 13:01:52 | 只看該作者
Some Results on the Laplacian Spectra of Token Graphs,. such that ., the Laplacian spectrum of . is contained in the Laplacian spectrum of .. Besides, we obtain a relationship between the spectra of the .-token graph of . and the .-token graph of its complement .. This generalizes a well-known property for Laplacian eigenvalues of graphs to token graphs.
58#
發(fā)表于 2025-3-31 15:34:54 | 只看該作者
59#
發(fā)表于 2025-3-31 20:26:12 | 只看該作者
Christian Korunka,Bettina Kubicek of pseudocircles. Furthermore, we construct an infinite family of 4-edge-critical 4-regular planar graphs which are fractionally 3-colorable. This disproves the conjecture of Gimbel, Kündgen, Li and Thomassen (2019) that every 4-chromatic planar graph has fractional chromatic number strictly greater than?3.
60#
發(fā)表于 2025-4-1 00:52:58 | 只看該作者
Coloring Circle Arrangements: New 4-Chromatic Planar Graphs, of pseudocircles. Furthermore, we construct an infinite family of 4-edge-critical 4-regular planar graphs which are fractionally 3-colorable. This disproves the conjecture of Gimbel, Kündgen, Li and Thomassen (2019) that every 4-chromatic planar graph has fractional chromatic number strictly greater than?3.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂温| 宁南县| 元朗区| 高要市| 长治市| 西吉县| 秭归县| 新河县| 涿州市| 比如县| 文安县| 昌吉市| 城市| 阿克苏市| 玉龙| 九龙县| 杂多县| 西吉县| 巨野县| 津市市| 丹东市| 子长县| 临高县| 来安县| 定日县| 天全县| 会昌县| 巴塘县| 夏河县| 瓦房店市| 修武县| 托克逊县| 长子县| 溧水县| 上饶市| 枣强县| 武山县| 望谟县| 惠水县| 扶风县| 两当县|