找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts EuroComb 2021; European Conference Jaroslav Ne?et?il,Guillem Perarnau,Oriol Serra Conference proceedings 2021 The Edito

[復(fù)制鏈接]
查看: 45278|回復(fù): 63
樓主
發(fā)表于 2025-3-21 19:58:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Extended Abstracts EuroComb 2021
副標(biāo)題European Conference
編輯Jaroslav Ne?et?il,Guillem Perarnau,Oriol Serra
視頻videohttp://file.papertrans.cn/320/319789/319789.mp4
概述Is published at every edition of EuroComb which is one of the leading conferences in the area worldwide.Presents the most recent achievements in this conference.Collects the extended abstracts of the
叢書名稱Trends in Mathematics
圖書封面Titlebook: Extended Abstracts EuroComb 2021; European Conference  Jaroslav Ne?et?il,Guillem Perarnau,Oriol Serra Conference proceedings 2021 The Edito
描述.This book collects the extended abstracts of the accepted contributions to EuroComb21. A similar book is published at every edition of EuroComb (every two years since 2001) collecting the most recent advances in combinatorics, graph theory, and related areas.? It has a wide audience in the areas, and the papers are used and referenced broadly..
出版日期Conference proceedings 2021
關(guān)鍵詞algebraic combinatorics; combinatorial geometry; combinatorial number theory; combinatorial optimizatio
版次1
doihttps://doi.org/10.1007/978-3-030-83823-2
isbn_softcover978-3-030-83822-5
isbn_ebook978-3-030-83823-2Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Extended Abstracts EuroComb 2021影響因子(影響力)




書目名稱Extended Abstracts EuroComb 2021影響因子(影響力)學(xué)科排名




書目名稱Extended Abstracts EuroComb 2021網(wǎng)絡(luò)公開(kāi)度




書目名稱Extended Abstracts EuroComb 2021網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Extended Abstracts EuroComb 2021被引頻次




書目名稱Extended Abstracts EuroComb 2021被引頻次學(xué)科排名




書目名稱Extended Abstracts EuroComb 2021年度引用




書目名稱Extended Abstracts EuroComb 2021年度引用學(xué)科排名




書目名稱Extended Abstracts EuroComb 2021讀者反饋




書目名稱Extended Abstracts EuroComb 2021讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:13 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/e/image/319789.jpg
板凳
發(fā)表于 2025-3-22 01:03:35 | 只看該作者
Conference proceedings 2021.This book collects the extended abstracts of the accepted contributions to EuroComb21. A similar book is published at every edition of EuroComb (every two years since 2001) collecting the most recent advances in combinatorics, graph theory, and related areas.? It has a wide audience in the areas, and the papers are used and referenced broadly..
地板
發(fā)表于 2025-3-22 08:36:20 | 只看該作者
5#
發(fā)表于 2025-3-22 11:26:56 | 只看該作者
6#
發(fā)表于 2025-3-22 13:43:45 | 只看該作者
7#
發(fā)表于 2025-3-22 20:04:45 | 只看該作者
Imitation von AuslandsmarkteintrittenLet?. be a finite field consisting of?. elements and let?. be an integer. In this paper, we study the size of local Kakeya sets with respect to subsets of?. and obtain upper and lower bounds for the minimum size of a (local) Kakeya set with respect to an arbitrary set?..
8#
發(fā)表于 2025-3-23 00:04:34 | 只看該作者
A woodworm in the intentional relation,We denote by .(.,?.) a graph chosen uniformly at random from the class of all vertex-labelled planar graphs on vertex set . with . edges. We determine the asymptotic number of cut vertices in .(.,?.) in the sparse regime. For comparison, we also derive the asymptotic number of cut vertices in the Erd?s-Rényi random graph .(.,?.).
9#
發(fā)表于 2025-3-23 03:06:30 | 只看該作者
10#
發(fā)表于 2025-3-23 07:29:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍山县| 吉安市| 铜梁县| 彰化县| 木里| 凤城市| 历史| 宁城县| 章丘市| 建始县| 四川省| 永川市| 蒙山县| 海阳市| 蓬莱市| 常熟市| 泊头市| 丰原市| 丹江口市| 迁安市| 南木林县| 云安县| 天台县| 灌云县| 元阳县| 项城市| 民和| 英德市| 唐山市| 贺州市| 绩溪县| 施甸县| 双辽市| 望江县| 靖安县| 保康县| 汕头市| 凤山县| 合山市| 新巴尔虎右旗| 巩留县|