找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts 2021/2022; Ghent Analysis and P Michael Ruzhansky,Karel Van Bockstal Book 2024 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: 脾氣好
11#
發(fā)表于 2025-3-23 11:08:54 | 只看該作者
12#
發(fā)表于 2025-3-23 16:47:19 | 只看該作者
https://doi.org/10.1007/978-981-10-6150-9hed. Actually, we obtain weighted critical Sobolev-type identities. Furthermore, anisotropic versions of these identities with any homogeneous quasi-norm are presented. Finally, we discuss hypoelliptic versions of these results in the setting of stratified Lie groups.
13#
發(fā)表于 2025-3-23 20:54:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:58:46 | 只看該作者
Pointwise Domination and Weak , Boundedness of Littlewood-Paley Operators via Sparse Operators3, 2014; Theorem 1.1) is quite short and, unlike the original proof, does not rely on the properties of the “Marcinkiewicz function”. This allows us to get a precise linear dependence on Dini constants with a subsequent application to Littlewood–Paley operators by the well-known techniques.
15#
發(fā)表于 2025-3-24 05:40:53 | 只看該作者
Boundedness of Fourier Multipliers on Graded Lie Groupsoperators on an arbitrary graded Lie group ., where . is the Hardy spaces on .. Our main result extends those obtained by Fischer and Ruzhansky (Colloq Math 165:1–30, 2021), who proved the . and ., ., boundedness of such Fourier multiplier operators.
16#
發(fā)表于 2025-3-24 07:41:21 | 只看該作者
17#
發(fā)表于 2025-3-24 13:09:40 | 只看該作者
-, Norms of Spectral Multipliersevant .-. norm estimates to spectral multipliers of left-invariant weighted subcoercive operators on unimodular Lie groups. In particular, this includes spectral multipliers of Laplacians, sub-Laplacians and Rockland operators. As an application, we obtain, e.g., time asymptotics for the .-. norms of the heat kernels and Sobolev-type embeddings.
18#
發(fā)表于 2025-3-24 18:01:50 | 只看該作者
19#
發(fā)表于 2025-3-24 21:09:51 | 只看該作者
978-3-031-42541-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
20#
發(fā)表于 2025-3-25 01:01:22 | 只看該作者
Extended Abstracts 2021/2022978-3-031-42539-4Series ISSN 2297-0215 Series E-ISSN 2297-024X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸丰县| 瓦房店市| 永春县| 瑞金市| 甘德县| 汕头市| 巩留县| 林周县| 沙湾县| 威信县| 荥经县| 慈利县| 兴化市| 邳州市| 宜兴市| 繁昌县| 湘西| 蓬莱市| 侯马市| 平谷区| 香河县| 漠河县| 原平市| 深圳市| 定边县| 西乡县| 明水县| 封开县| 蚌埠市| 新津县| 黑山县| 禄丰县| 车险| 绵竹市| 芜湖市| 商南县| 凌源市| 陆川县| 泰州市| 镇安县| 高平市|