找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts 2021/2022; Methusalem Lectures Duván Cardona,Joel Restrepo,Michael Ruzhansky Conference proceedings 2024 The Editor(s) (

[復制鏈接]
樓主: 減輕
41#
發(fā)表于 2025-3-28 15:23:24 | 只看該作者
Ond?ej Císa?,Manès Weisskircherngular values, we obtain a two-radius theorem for integrals over sub-Riemannian geodesics. We also state intertwining properties of distinguished differential operators. We conclude with a description of ongoing work.
42#
發(fā)表于 2025-3-28 19:56:00 | 只看該作者
Julia Novak,Caitríona Ní Dhúillfor the eigenvalues of the Laplacians with Neumann and Dirichlet boundary conditions on bounded, simply connected planar domains. This principle can be used to provide simple proofs of some previously known results on the hot spots conjecture.
43#
發(fā)表于 2025-3-29 02:09:18 | 只看該作者
44#
發(fā)表于 2025-3-29 04:12:46 | 只看該作者
45#
發(fā)表于 2025-3-29 09:04:37 | 只看該作者
https://doi.org/10.1007/978-3-319-41015-9ns in .-limit when the thickness of the layer converges to zero. It is shown how the mixed type boundary value problem (BVP) for the bi-Laplace equation in the initial thin layer transforms in the .-limit into an appropriate Dirichlet BVP for the bi-Laplace-Beltrami equation on the surface. For this
46#
發(fā)表于 2025-3-29 13:10:12 | 只看該作者
47#
發(fā)表于 2025-3-29 18:27:27 | 只看該作者
Imagining Ireland‘s Future, 1870-1914aled Dirichlet energies, and use it to study the renormalized solution—the Almgren’s blowup. However, such monotonicity formulas require strong smoothness assumptions on domains and operators. We are interested in the cases when monotonicity formulas are not available, including variable coefficient
48#
發(fā)表于 2025-3-29 23:26:36 | 只看該作者
49#
發(fā)表于 2025-3-30 02:44:08 | 只看該作者
convergence of Vilenkin-Fourier series of . for . in case the Vilenkin system is bounded. Moreover, we state an analogy of the Kolmogorov theorem for . and construct a function . such that the partial sums with respect to Vilenkin systems diverge everywhere.
50#
發(fā)表于 2025-3-30 06:15:04 | 只看該作者
978-3-031-48581-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 03:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
高唐县| 仁化县| 淳安县| 蓝山县| 庆云县| 通河县| 嘉兴市| 辽宁省| 嵊泗县| 瑞丽市| 宜兰市| 措勤县| 白城市| 道真| 哈尔滨市| 黎川县| 金乡县| 定南县| 安泽县| 河曲县| 香格里拉县| 田林县| 瑞昌市| 潞城市| 沾益县| 塔河县| 紫阳县| 孙吴县| 南丰县| 贵南县| 库伦旗| 翁源县| 开平市| 武安市| 金沙县| 涟水县| 五河县| 雅江县| 潍坊市| 广昌县| 曲周县|