找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exponential Functionals of Brownian Motion and Related Processes; Marc Yor Book 2001 Springer-Verlag Berlin Heidelberg 2001 Asian options.

[復(fù)制鏈接]
樓主: whiplash
21#
發(fā)表于 2025-3-25 04:10:02 | 只看該作者
22#
發(fā)表于 2025-3-25 08:19:02 | 只看該作者
,On Exponential Functionals of Certain Lévy Processes, exponential time, to the case where ξ belongs to a certain class of Lévy processes. Our method hinges on a bijection, introduced by Lamperti, between exponentials of Lévy processes and semi-stable Markov processes.
23#
發(fā)表于 2025-3-25 14:58:06 | 只看該作者
Exponential Functionals of Brownian Motion and Disordered Systems,nd one-dimensional disordered models. We study some properties of these exponential functionals in relation with the problem of a particle coupled to a heat bath in a Wiener potential. Explicit expressions for the distribution of the free energy are presented.
24#
發(fā)表于 2025-3-25 16:45:34 | 只看該作者
Marc YorThese papers were so far available only in journals, several of them only in French..Collected together here in English, they are accompanied by a foreword by H. Geman, professor of Finance at the Uni
25#
發(fā)表于 2025-3-25 21:47:04 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:59:42 | 只看該作者
https://doi.org/10.1007/978-3-031-45994-8Let (B.,t ≥ 0) denote a real-valued Brownian motion starting from 0, and let . be a real.
28#
發(fā)表于 2025-3-26 11:36:17 | 只看該作者
Psychische und Verhaltensst?rungen (F00–F99)This paper studies the moments of some exponential-integral functionals of Bessel processes, which are of interest in some questions of mathematical finance, including the valuation of perpetuities and Asian options.
29#
發(fā)表于 2025-3-26 13:05:54 | 只看該作者
30#
發(fā)表于 2025-3-26 19:11:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 22:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永顺县| 芦溪县| 南部县| 禄丰县| 南昌市| 朝阳市| 泌阳县| 万州区| 兴安县| 防城港市| 尚义县| 平邑县| 十堰市| 平和县| 浮梁县| 特克斯县| 舞钢市| 保德县| 黄陵县| 且末县| 馆陶县| 定西市| 青神县| 辽阳县| 永德县| 武冈市| 塔河县| 清涧县| 兰溪市| 乌恰县| 淮南市| 济宁市| 滦平县| 泗阳县| 海阳市| 景洪市| 波密县| 乌兰浩特市| 金溪县| 宜良县| 麟游县|