找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring the Riemann Zeta Function; 190 years from Riema Hugh Montgomery,Ashkan Nikeghbali,Michael Th. Rass Book 2017 Springer Internation

[復(fù)制鏈接]
樓主: 債務(wù)人
31#
發(fā)表于 2025-3-27 00:42:39 | 只看該作者
Forschungsgruppe Konsum und VerhaltenWe prove a version of Bagchi’s Theorem and of Voronin’s Universality Theorem for the family of primitive cusp forms of weight 2 and prime level, and discuss under which conditions the argument will apply to a general reasonable family of automorphic .-functions.
32#
發(fā)表于 2025-3-27 04:37:06 | 只看該作者
https://doi.org/10.1007/978-3-319-50950-1A Taniyama product for the Riemann zeta function is defined and an analogue of Mertens’ theorem is proved.
33#
發(fā)表于 2025-3-27 08:39:06 | 只看該作者
The Temptation of the Exceptional Characters,We survey some of the history and results related to the topic of the title with an emphasis admittedly biased toward our joint works thereon.
34#
發(fā)表于 2025-3-27 11:52:58 | 只看該作者
,On a Cubic Moment of Hardy’s Function with a Shift,An asymptotic formula for . is derived, where . is Hardy’s function. The cubic moment of .(.) is also discussed, and a mean value result is presented which supports the author’s conjecture that
35#
發(fā)表于 2025-3-27 16:51:33 | 只看該作者
36#
發(fā)表于 2025-3-27 19:53:38 | 只看該作者
37#
發(fā)表于 2025-3-28 00:10:25 | 只看該作者
Friendship, Intimacy, and Humor,zeta function as a meromorphic function in the plane with a functional equation. Riemann is a very remarkable figure in the history of mathematics. The present article describes his career including the major mathematical highlights, and gives some discussion of his published and unpublished work on the zeta function.
38#
發(fā)表于 2025-3-28 03:37:23 | 只看該作者
39#
發(fā)表于 2025-3-28 09:45:46 | 只看該作者
Hugh Montgomery,Ashkan Nikeghbali,Michael Th. RassIllustrates mathematical results and solves open problems in a simple manner.Features contributions by experts in analysis, number theory, and related fields.Contains new results in rapidly progressin
40#
發(fā)表于 2025-3-28 10:35:08 | 只看該作者
http://image.papertrans.cn/e/image/319661.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福海县| 渑池县| 简阳市| 石家庄市| 沐川县| 开平市| 时尚| 通化市| 高雄市| 吐鲁番市| 栾川县| 鹤壁市| 屏山县| 淮安市| 太仓市| 兴海县| 平定县| 镇远县| 滦南县| 神池县| 泌阳县| 堆龙德庆县| 吉木萨尔县| 黎城县| 获嘉县| 泽库县| 英吉沙县| 雷州市| 株洲县| 宣威市| 晴隆县| 比如县| 西吉县| 九台市| 奇台县| 通化县| 外汇| 山西省| 永年县| 博客| 湘阴县|