找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring the Riemann Zeta Function; 190 years from Riema Hugh Montgomery,Ashkan Nikeghbali,Michael Th. Rass Book 2017 Springer Internation

[復(fù)制鏈接]
查看: 42823|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:14:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Exploring the Riemann Zeta Function
副標(biāo)題190 years from Riema
編輯Hugh Montgomery,Ashkan Nikeghbali,Michael Th. Rass
視頻videohttp://file.papertrans.cn/320/319661/319661.mp4
概述Illustrates mathematical results and solves open problems in a simple manner.Features contributions by experts in analysis, number theory, and related fields.Contains new results in rapidly progressin
圖書封面Titlebook: Exploring the Riemann Zeta Function; 190 years from Riema Hugh Montgomery,Ashkan Nikeghbali,Michael Th. Rass Book 2017 Springer Internation
描述.Exploring the Riemann Zeta Function: 190 years from Riemann‘s Birth.?presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.. .The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography..
出版日期Book 2017
關(guān)鍵詞analytic number theory; probability theory; ergodic theory; harmonic analysis; approximation theory; spec
版次1
doihttps://doi.org/10.1007/978-3-319-59969-4
isbn_softcover978-3-319-86748-9
isbn_ebook978-3-319-59969-4
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Exploring the Riemann Zeta Function影響因子(影響力)




書目名稱Exploring the Riemann Zeta Function影響因子(影響力)學(xué)科排名




書目名稱Exploring the Riemann Zeta Function網(wǎng)絡(luò)公開度




書目名稱Exploring the Riemann Zeta Function網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Exploring the Riemann Zeta Function被引頻次




書目名稱Exploring the Riemann Zeta Function被引頻次學(xué)科排名




書目名稱Exploring the Riemann Zeta Function年度引用




書目名稱Exploring the Riemann Zeta Function年度引用學(xué)科排名




書目名稱Exploring the Riemann Zeta Function讀者反饋




書目名稱Exploring the Riemann Zeta Function讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:15:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:27:55 | 只看該作者
地板
發(fā)表于 2025-3-22 05:00:31 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:25 | 只看該作者
6#
發(fā)表于 2025-3-22 13:52:08 | 只看該作者
7#
發(fā)表于 2025-3-22 20:03:38 | 只看該作者
Explorations in the Theory of Partition Zeta Functions,case of the multiplicative theory, we provide specialization formulas and results on the analytic continuations of these “partition zeta functions,” find unusual formulas for the Riemann zeta function, prove identities for multiple zeta values, and see that some of the formulas allow for .-adic inte
8#
發(fā)表于 2025-3-22 22:57:44 | 只看該作者
Reading Riemann,wareness of the developments in mathematics, and, in particular, in mathematical physics at that time shows that Riemann was working in a very specific environment and that his thinking reflects this environment. It is therefore helpful to know something of this background. Riemann’s short paper on
9#
發(fā)表于 2025-3-23 03:51:35 | 只看該作者
,Arthur’s Truncated Eisenstein Series for ,(2, ,) and the Riemann Zeta Function: A Survey,nglands and Arthur. In this survey we focus on the deep connections between Eisenstein series for .(2,?.), truncation, and the Riemann zeta function. Applications to zero free regions for the Riemann zeta function and automorphic L-functions are elucidated.
10#
發(fā)表于 2025-3-23 08:19:00 | 只看該作者
Some Analogues of Pair Correlation of Zeta Zeros, two Dirichlet .-functions. In each case the relevant Riemann Hypothesis is assumed for obtaining the results. Several auxiliary results necessary for the calculations may be useful in problems about the zeta-function.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
廉江市| 桓仁| 颍上县| 桦川县| 龙南县| 剑阁县| 镇巴县| 灵武市| 安龙县| 兴安县| 吉林市| 建水县| 德庆县| 姜堰市| 遵义县| 寿光市| 措勤县| 金乡县| 南康市| 通渭县| 双辽市| 夏邑县| 麦盖提县| 乳山市| 三亚市| 高阳县| 交口县| 凤城市| 平邑县| 老河口市| 织金县| 延长县| 敖汉旗| 宜兰市| 淳化县| 岳池县| 华安县| 左云县| 淮北市| 太仆寺旗| 新巴尔虎左旗|