找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Exploring Mathematics; Problem-Solving and Daniel Grieser Textbook 2018 Springer Nature Switzerland AG 2018 MSC (2010): 00-01, 00A07, 00A0

[復(fù)制鏈接]
樓主: angiotensin-I
41#
發(fā)表于 2025-3-28 17:16:18 | 只看該作者
42#
發(fā)表于 2025-3-28 19:39:45 | 只看該作者
Mathematical induction,other instance of the idea of recursion: reduce the problem to a smaller problem of the same kind. Mathematical induction implements this idea for proofs, while recurrence relations are used in problems where you want to determine some quantity.
43#
發(fā)表于 2025-3-29 00:49:25 | 只看該作者
Graphs,mathematics. They bear no relation to formulas or equations, nor to geometry. But thinking about them leads to a lot of interesting mathematics, and you will discover some of that mathematics in this chapter. You will use mathematical induction in a new context and learn some new techniques for prob
44#
發(fā)表于 2025-3-29 04:01:53 | 只看該作者
Counting, can find counting problems in everyday life and in calculating probabilities (how likely is it to have two pairs in a poker hand?). You have already seen some counting problems in previous chapters and learned about the recursion technique. In this chapter we will take a systematic look at counting
45#
發(fā)表于 2025-3-29 10:58:44 | 只看該作者
46#
發(fā)表于 2025-3-29 14:15:08 | 只看該作者
Logic and proofs, Therefore, if you want to argue reliably then you should know well both the basic logical structures and the phrases we use to express them. In the course of a mathematical investigation you make observations, discover patterns, have insights, make conjectures. In order to be sure that a conjecture
47#
發(fā)表于 2025-3-29 17:01:42 | 只看該作者
Elementary number theory, with since you were a small child. Therefore number theory is very suitable for your exploration of mathematics, and you will find number-theoretic problems in many places in this book. Number theory has many faces: some of the hardest problems of mathematics, still unsolved today, are stated in si
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汪清县| 会同县| 鱼台县| 岳阳县| 建德市| 伊宁县| 武义县| 普陀区| 宜阳县| 田阳县| 乐山市| 大埔区| 淅川县| 舒城县| 永和县| 广丰县| 丁青县| 行唐县| 东乌| 彭山县| 茌平县| 青田县| 瓮安县| 常宁市| 和平区| 湘阴县| 崇信县| 常熟市| 随州市| 辽阳市| 汉源县| 平罗县| 卢湾区| 洛阳市| 马公市| 喀什市| 怀柔区| 临泽县| 阳山县| 成都市| 吴川市|