找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explorations in Harmonic Analysis; With Applications to Steven G. Krantz Textbook 2009 Birkh?user Boston 2009 Fourier analysis.Fourier tran

[復(fù)制鏈接]
樓主: papertrans
11#
發(fā)表于 2025-3-23 11:08:36 | 只看該作者
https://doi.org/10.1007/978-981-16-9543-8The function theory of several complex variables (SCV) is—obviously—a generalization of the subject of one complex variable. Certainly some of the results in the former subject are inspired by ideas from the latter subject. But SCV really has an entirely new character.
12#
發(fā)表于 2025-3-23 16:50:10 | 只看該作者
13#
發(fā)表于 2025-3-23 21:04:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:21:25 | 只看該作者
Ontology and History of Real Analysis,Real analysis as a subject grew out of struggles to understand, and to make rigorous, Newton and Leibniz’s calculus. But its roots wander in all directions—into real analytic function theory, into the analysis of polynomials, into the solution of differential equations.
15#
發(fā)表于 2025-3-24 03:04:24 | 只看該作者
16#
發(fā)表于 2025-3-24 09:50:55 | 只看該作者
Fractional and Singular Integrals,In some vague sense, the collection of all fractional and singular integrals forms a poor man’s version of a classical calculus of pseudodifferential operators. Certainly a fractional integral is very much like the parametrix for a strongly elliptic operator.
17#
發(fā)表于 2025-3-24 10:57:46 | 只看該作者
A Crash Course in Several Complex Variables,The function theory of several complex variables (SCV) is—obviously—a generalization of the subject of one complex variable. Certainly some of the results in the former subject are inspired by ideas from the latter subject. But SCV really has an entirely new character.
18#
發(fā)表于 2025-3-24 15:49:52 | 只看該作者
Introduction to the Heisenberg Group,This chapter and the next constitute the climax of the present book.We have tried to lay the groundwork so that the reader may see how it is natural to identify the boundary of the unit ball in ℃. with the Heisenberg group and then to do harmonic analysis on that group.
19#
發(fā)表于 2025-3-24 22:00:44 | 只看該作者
20#
發(fā)表于 2025-3-25 00:12:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内乡县| 乌鲁木齐县| 娱乐| 阿拉善右旗| 庆城县| 安福县| 宝山区| 枣阳市| 贞丰县| 吐鲁番市| 鲁甸县| 米易县| 孝昌县| 涟源市| 临邑县| 青田县| 无棣县| 芒康县| 肥城市| 扬中市| 安顺市| 南澳县| 奎屯市| 柘城县| 宁强县| 苏州市| 泸水县| 铜山县| 汕头市| 天峨县| 盘山县| 敦煌市| 莱芜市| 来宾市| 西畴县| 祁连县| 称多县| 乐东| 温宿县| 忻州市| 呼和浩特市|