找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explorations in Complex Functions; Richard Beals,Roderick S. C. Wong Textbook 2020 Springer Nature Switzerland AG 2020 Complex analysis te

[復(fù)制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 09:43:20 | 只看該作者
https://doi.org/10.1007/978-1-4899-0562-8This chapter relies heavily on Chapter ., with some reference to analytic continuation and conformal mapping, particularly Theorem ..
12#
發(fā)表于 2025-3-23 17:08:48 | 只看該作者
13#
發(fā)表于 2025-3-23 18:25:49 | 只看該作者
14#
發(fā)表于 2025-3-24 00:38:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:31:29 | 只看該作者
Riemann surfaces and algebraic curves,A Riemann surface can be thought as the domain of definition of a holomorphic function . that has been continued analytically as far as such continuations can be carried out. In general this is not a domain in the previous sense, i.e. a subset of the plane. Rather it is a complex manifold of one (complex) dimension that projects locally into ..
16#
發(fā)表于 2025-3-24 08:24:39 | 只看該作者
Entire functions,An entire function, a function that is defined and holomorphic in the entire plane ., can be analyzed in terms of its zeros and of its growth. Such an analysis has important applications.
17#
發(fā)表于 2025-3-24 11:35:26 | 只看該作者
18#
發(fā)表于 2025-3-24 15:13:29 | 只看該作者
The Riemann zeta function,As Euler noted, the fact that the series (.) diverges at . gives another proof that the set of primes is infinite—in fact . diverges. (This is only the simplest of the connections between properties of the zeta function and properties of primes.)
19#
發(fā)表于 2025-3-24 19:27:25 | 只看該作者
20#
發(fā)表于 2025-3-25 03:00:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铁岭县| 滕州市| 安顺市| 资源县| 泌阳县| 美姑县| 大兴区| 贺兰县| 平陆县| 托克逊县| 五家渠市| 正阳县| 谢通门县| 钟祥市| 沁水县| 囊谦县| 阳信县| 游戏| 大庆市| 凤冈县| 芒康县| 建昌县| 霍山县| 贵德县| 五家渠市| 旅游| 左权县| 靖宇县| 许昌市| 南宁市| 南川市| 田阳县| 澄江县| 乌兰县| 丽江市| 石泉县| 三原县| 五家渠市| 内江市| 什邡市| 麻城市|