找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploitation of Linkage Learning in Evolutionary Algorithms; Ying-ping Chen Book 2010 Springer-Verlag Berlin Heidelberg 2010 Bayesian netw

[復(fù)制鏈接]
查看: 30710|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:04:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms
編輯Ying-ping Chen
視頻videohttp://file.papertrans.cn/320/319373/319373.mp4
概述The recent progress of linkage learning.Demonstrates a new connection between optimization methodologies and natural evolution mechanisms.Written by experts in the field
叢書(shū)名稱Adaptation, Learning, and Optimization
圖書(shū)封面Titlebook: Exploitation of Linkage Learning in Evolutionary Algorithms;  Ying-ping Chen Book 2010 Springer-Verlag Berlin Heidelberg 2010 Bayesian netw
描述.One major branch of enhancing the performance of evolutionary algorithms is the exploitation of linkage learning. This monograph aims to capture the recent progress of linkage learning, by compiling a series of focused technical chapters to keep abreast of the developments and trends in the area of linkage. In evolutionary algorithms, linkage models the relation between decision variables with the genetic linkage observed in biological systems, and linkage learning connects computational optimization methodologies and natural evolution mechanisms. Exploitation of linkage learning can enable us to design better evolutionary algorithms as well as to potentially gain insight into biological systems. Linkage learning has the potential to become one of the dominant aspects of evolutionary algorithms; research in this area can potentially yield promising results in addressing the scalability issues. .
出版日期Book 2010
關(guān)鍵詞Bayesian network; Evolutionary Computation; Linkage Learning; Markov; algorithm; algorithms; calculus; evol
版次1
doihttps://doi.org/10.1007/978-3-642-12834-9
isbn_softcover978-3-642-26327-9
isbn_ebook978-3-642-12834-9Series ISSN 1867-4534 Series E-ISSN 1867-4542
issn_series 1867-4534
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms影響因子(影響力)




書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms影響因子(影響力)學(xué)科排名




書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms被引頻次




書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms被引頻次學(xué)科排名




書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms年度引用




書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms年度引用學(xué)科排名




書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms讀者反饋




書(shū)目名稱Exploitation of Linkage Learning in Evolutionary Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:09 | 只看該作者
https://doi.org/10.1007/978-3-319-33130-0dependent on) one another, and the performance of three basic types of genetic evolutionary algorithms (GEAs): hill climbing, genetic algorithm and bottom-up self-assembly (compositional). It explores how concepts and quantitative methods from the field of social/complex networks can be used to char
板凳
發(fā)表于 2025-3-22 03:41:50 | 只看該作者
地板
發(fā)表于 2025-3-22 06:41:38 | 只看該作者
5#
發(fā)表于 2025-3-22 09:28:27 | 只看該作者
The Relativistic Theory of Timelgorithms (EDAs). Distribution Estimation Using Markov network (DEUM) is one of the early EDAs to use this approach. Over the years, several different versions of DEUM have been proposed using different Markov network structures, and are shown to work well in a number of different optimisation probl
6#
發(fā)表于 2025-3-22 16:42:42 | 只看該作者
7#
發(fā)表于 2025-3-22 17:04:57 | 只看該作者
https://doi.org/10.1007/978-3-642-50696-3etic Algorithms may suffer from exponential scalability on hard problems. Estimation of Distribution Algorithms, a special class of Genetic Algorithms, can build complex models of the iterations among variables in the problem, solving several intractable problems in tractable polynomial time. Howeve
8#
發(fā)表于 2025-3-23 00:46:35 | 只看該作者
Der Brückenbauer Hans-Dietrich Genscherbution model, which is latter sampled to generate the population for the next generation. This chapter introduces a new way to estimate the distribution model and sample from it according to copula theory. The multivariate joint is decomposed into the univariate margins and a function called copula.
9#
發(fā)表于 2025-3-23 02:47:26 | 只看該作者
10#
發(fā)表于 2025-3-23 07:26:42 | 只看該作者
,Die Zeit der gro?en Landesausstellungen,f Distribution Algorithm (EDA) to solve the PSP problem on HP model. Firstly, a composite fitness function containing the information of folding structure core (H-Core) is introduced to replace the traditional fitness function of HP model. The new fitness function is expected to select better indivi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲜城| 正镶白旗| 抚顺市| 巩义市| 娄底市| 塘沽区| 嘉黎县| 福安市| 友谊县| 星子县| 吉水县| 光山县| 大悟县| 六枝特区| 雷山县| 银川市| 庆云县| 双鸭山市| 子洲县| 浠水县| 扎鲁特旗| 安福县| 宁河县| 谷城县| 清流县| 陈巴尔虎旗| 璧山县| 日照市| 锡林浩特市| 什邡市| 永吉县| 聂拉木县| 依兰县| 岐山县| 晋州市| 晋中市| 开封县| 获嘉县| 虞城县| 济源市| 新化县|