找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explicit Formulas; for Regularized Prod Jay Jorgenson,Serge Lang,Dorian Goldfeld Book 1994 Springer-Verlag Berlin Heidelberg 1994 Analytic

[復(fù)制鏈接]
查看: 14690|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:07:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Explicit Formulas
副標(biāo)題for Regularized Prod
編輯Jay Jorgenson,Serge Lang,Dorian Goldfeld
視頻videohttp://file.papertrans.cn/320/319360/319360.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Explicit Formulas; for Regularized Prod Jay Jorgenson,Serge Lang,Dorian Goldfeld Book 1994 Springer-Verlag Berlin Heidelberg 1994 Analytic
描述The theory of explicit formulas for regularized products and series forms a natural continuation of the analytic theory developed in LNM 1564. These explicit formulas can be used to describe the quantitative behavior of various objects in analytic number theory and spectral theory. The present book deals with other applications arising from Gaussian test functions, leading to theta inversion formulas and corresponding new types of zeta functions which are Gaussian transforms of theta series rather than Mellin transforms, and satisfy additive functional equations. Their wide range of applications includes the spectral theory of a broad class of manifolds and also the theory of zeta functions in number theory and representation theory. Here the hyperbolic 3-manifolds are given as a significant example.
出版日期Book 1994
關(guān)鍵詞Analytic number theory; Spectral theory; Zeta-functions; manifold; number theory
版次1
doihttps://doi.org/10.1007/BFb0074039
isbn_softcover978-3-540-58673-9
isbn_ebook978-3-540-49041-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1994
The information of publication is updating

書目名稱Explicit Formulas影響因子(影響力)




書目名稱Explicit Formulas影響因子(影響力)學(xué)科排名




書目名稱Explicit Formulas網(wǎng)絡(luò)公開度




書目名稱Explicit Formulas網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Explicit Formulas被引頻次




書目名稱Explicit Formulas被引頻次學(xué)科排名




書目名稱Explicit Formulas年度引用




書目名稱Explicit Formulas年度引用學(xué)科排名




書目名稱Explicit Formulas讀者反饋




書目名稱Explicit Formulas讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:57 | 只看該作者
,A spectral interpretation of Weil’s explicit formula,
板凳
發(fā)表于 2025-3-22 03:13:25 | 只看該作者
Book 1994xplicit formulas can be used to describe the quantitative behavior of various objects in analytic number theory and spectral theory. The present book deals with other applications arising from Gaussian test functions, leading to theta inversion formulas and corresponding new types of zeta functions
地板
發(fā)表于 2025-3-22 06:20:03 | 只看該作者
0075-8434 4. These explicit formulas can be used to describe the quantitative behavior of various objects in analytic number theory and spectral theory. The present book deals with other applications arising from Gaussian test functions, leading to theta inversion formulas and corresponding new types of zeta
5#
發(fā)表于 2025-3-22 11:48:03 | 只看該作者
6#
發(fā)表于 2025-3-22 13:02:14 | 只看該作者
0075-8434 applications includes the spectral theory of a broad class of manifolds and also the theory of zeta functions in number theory and representation theory. Here the hyperbolic 3-manifolds are given as a significant example.978-3-540-58673-9978-3-540-49041-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
7#
發(fā)表于 2025-3-22 18:32:58 | 只看該作者
978-3-540-58673-9Springer-Verlag Berlin Heidelberg 1994
8#
發(fā)表于 2025-3-22 21:41:15 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:55 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/319360.jpg
10#
發(fā)表于 2025-3-23 09:28:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滦平县| 房山区| 布拖县| 灵宝市| 长海县| 罗源县| 柳州市| 拉萨市| 屯门区| 浮梁县| 马鞍山市| 民权县| 宁乡县| 鹤庆县| 呼图壁县| 丹凤县| 东乌| 托里县| 湖北省| 晴隆县| 宁德市| 肃宁县| 兴宁市| 长治市| 永新县| 维西| 鹿邑县| 崇文区| 蒙阴县| 万安县| 彝良县| 洛宁县| 怀柔区| 郯城县| 天柱县| 鄯善县| 文水县| 方城县| 文成县| 武城县| 商丘市|