找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics; Ulianov Montano Book 2014 Springer International Publishing Switzerl

[復(fù)制鏈接]
樓主: Sinuate
21#
發(fā)表于 2025-3-25 06:26:59 | 只看該作者
On Non-literal Approachesshall be argued that the reasons for endorsing a non literal interpretation of mathematical beauty are rather weak. The discussion also examines the conceptions of mathematical beauty by Shaftesbury, Hutchenson and Gian-Carlo Rota.
22#
發(fā)表于 2025-3-25 08:41:18 | 只看該作者
Beautiful, Literallycapable of affording results as interesting as a model of scientific progress. We discuss in detail McAllister’s most attractive insight: the idea of the aesthetic induction, which intends to account for historical changes in aesthetic preferences.
23#
發(fā)表于 2025-3-25 13:19:11 | 只看該作者
Ugly, Literallyount of beauty based merely on the passive contemplation of properties of objects is insufficient to account for mathematical items that involve the active use of our attention. Special emphasis is placed on the importance of mental contents and mental activities in mathematical beauty; the crucial notion of intentional object is thus introduced.
24#
發(fā)表于 2025-3-25 19:48:07 | 只看該作者
25#
發(fā)表于 2025-3-25 23:17:21 | 只看該作者
26#
發(fā)表于 2025-3-26 01:47:41 | 只看該作者
Book 2014ditional aesthetic phenomena. Building upon a view advanced by James McAllister, the assertion is that beauty in science does not confine itself to anecdotes or personal idiosyncrasies, but rather that it had played a role in shaping the development of science. Mathematicians often evaluate certain
27#
發(fā)表于 2025-3-26 05:12:25 | 只看該作者
Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics
28#
發(fā)表于 2025-3-26 10:41:42 | 只看該作者
0166-6991 and contemporary approaches to mathematical beauty. The author concludes that literal approaches are much more coherent and fruitful, however, much is yet to be done. In this respect two chapters are devoted t978-3-319-35381-4978-3-319-03452-2Series ISSN 0166-6991 Series E-ISSN 2542-8292
29#
發(fā)表于 2025-3-26 15:07:00 | 只看該作者
Book 2014matical beauty in a literal or non-literal fashion, which also serves to survey historical and contemporary approaches to mathematical beauty. The author concludes that literal approaches are much more coherent and fruitful, however, much is yet to be done. In this respect two chapters are devoted t
30#
發(fā)表于 2025-3-26 18:21:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达州市| 上犹县| 冀州市| 崇礼县| 铁岭县| 民勤县| 横峰县| 苏尼特左旗| 谢通门县| 桂东县| 芦溪县| 鹿邑县| 桐梓县| 威海市| 资中县| 霍林郭勒市| 三穗县| 兰坪| 清徐县| 来安县| 济源市| 濮阳市| 始兴县| 武城县| 扬州市| 博爱县| 镶黄旗| 霍城县| 墨脱县| 全南县| 涿州市| 略阳县| 垫江县| 南雄市| 游戏| 连平县| 萝北县| 民丰县| 尉氏县| 临漳县| 大余县|