找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics; Ulianov Montano Book 2014 Springer International Publishing Switzerl

[復制鏈接]
樓主: Sinuate
21#
發(fā)表于 2025-3-25 06:26:59 | 只看該作者
On Non-literal Approachesshall be argued that the reasons for endorsing a non literal interpretation of mathematical beauty are rather weak. The discussion also examines the conceptions of mathematical beauty by Shaftesbury, Hutchenson and Gian-Carlo Rota.
22#
發(fā)表于 2025-3-25 08:41:18 | 只看該作者
Beautiful, Literallycapable of affording results as interesting as a model of scientific progress. We discuss in detail McAllister’s most attractive insight: the idea of the aesthetic induction, which intends to account for historical changes in aesthetic preferences.
23#
發(fā)表于 2025-3-25 13:19:11 | 只看該作者
Ugly, Literallyount of beauty based merely on the passive contemplation of properties of objects is insufficient to account for mathematical items that involve the active use of our attention. Special emphasis is placed on the importance of mental contents and mental activities in mathematical beauty; the crucial notion of intentional object is thus introduced.
24#
發(fā)表于 2025-3-25 19:48:07 | 只看該作者
25#
發(fā)表于 2025-3-25 23:17:21 | 只看該作者
26#
發(fā)表于 2025-3-26 01:47:41 | 只看該作者
Book 2014ditional aesthetic phenomena. Building upon a view advanced by James McAllister, the assertion is that beauty in science does not confine itself to anecdotes or personal idiosyncrasies, but rather that it had played a role in shaping the development of science. Mathematicians often evaluate certain
27#
發(fā)表于 2025-3-26 05:12:25 | 只看該作者
Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics
28#
發(fā)表于 2025-3-26 10:41:42 | 只看該作者
0166-6991 and contemporary approaches to mathematical beauty. The author concludes that literal approaches are much more coherent and fruitful, however, much is yet to be done. In this respect two chapters are devoted t978-3-319-35381-4978-3-319-03452-2Series ISSN 0166-6991 Series E-ISSN 2542-8292
29#
發(fā)表于 2025-3-26 15:07:00 | 只看該作者
Book 2014matical beauty in a literal or non-literal fashion, which also serves to survey historical and contemporary approaches to mathematical beauty. The author concludes that literal approaches are much more coherent and fruitful, however, much is yet to be done. In this respect two chapters are devoted t
30#
發(fā)表于 2025-3-26 18:21:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
镇宁| 余江县| 尼玛县| 兰州市| 瑞丽市| 汝州市| 宁津县| 读书| 龙泉市| 峨眉山市| 利川市| 玛多县| 龙游县| 兰西县| 馆陶县| 即墨市| 宜昌市| 娱乐| 安宁市| 漠河县| 石景山区| 乌鲁木齐县| 张北县| 宁强县| 华安县| 仙游县| 班玛县| 西吉县| 化德县| 大足县| 昌宁县| 巴楚县| 乐亭县| 镇宁| 玉林市| 甘洛县| 义乌市| 如皋市| 廊坊市| 榆树市| 商洛市|