找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable and Interpretable Reinforcement Learning for Robotics; Aaron M. Roth,Dinesh Manocha,Elham Tabassi Book 2024 The Editor(s) (if

[復(fù)制鏈接]
查看: 32265|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:34:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Explainable and Interpretable Reinforcement Learning for Robotics
編輯Aaron M. Roth,Dinesh Manocha,Elham Tabassi
視頻videohttp://file.papertrans.cn/320/319305/319305.mp4
概述Provides readers with a categorization system to discuss explainable and interpretable RL techniques.Explores RL methodology specific to robotics applications.Explains how interpretable RL algorithms
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: Explainable and Interpretable Reinforcement Learning for Robotics;  Aaron M. Roth,Dinesh Manocha,Elham Tabassi Book 2024 The Editor(s) (if
描述.This book surveys the state of the art in explainable and interpretable reinforcement learning (RL) as relevant for robotics. While RL in general has grown in popularity and been applied to increasingly complex problems, several challenges have impeded the real-world adoption of RL algorithms for robotics and related areas. These include difficulties in preventing safety constraints from being violated and the issues faced by systems operators who desire explainable policies and actions. Robotics applications present a unique set of considerations and result in? a number of opportunities related to their physical, real-world sensory input and interactions..?The authors consider classification techniques used in past surveys and papers and attempt to unify terminology across the field. The book provides an in-depth exploration of 12 attributes that can be used to classify explainable/interpretable techniques. These include whether the RL method is model-agnostic or model-specific, self-explainable or post-hoc, as well as additional analysis of the attributes of scope, when-produced, format, knowledge limits, explanation accuracy, audience, predictability, legibility, readability, a
出版日期Book 2024
關(guān)鍵詞Robot Learning; Autonomous Robotics; Safe AI; Explainable AI; Interpretable AI; Learning Systems; Intellig
版次1
doihttps://doi.org/10.1007/978-3-031-47518-4
isbn_softcover978-3-031-47520-7
isbn_ebook978-3-031-47518-4Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Explainable and Interpretable Reinforcement Learning for Robotics影響因子(影響力)




書目名稱Explainable and Interpretable Reinforcement Learning for Robotics影響因子(影響力)學(xué)科排名




書目名稱Explainable and Interpretable Reinforcement Learning for Robotics網(wǎng)絡(luò)公開度




書目名稱Explainable and Interpretable Reinforcement Learning for Robotics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Explainable and Interpretable Reinforcement Learning for Robotics被引頻次




書目名稱Explainable and Interpretable Reinforcement Learning for Robotics被引頻次學(xué)科排名




書目名稱Explainable and Interpretable Reinforcement Learning for Robotics年度引用




書目名稱Explainable and Interpretable Reinforcement Learning for Robotics年度引用學(xué)科排名




書目名稱Explainable and Interpretable Reinforcement Learning for Robotics讀者反饋




書目名稱Explainable and Interpretable Reinforcement Learning for Robotics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:30:22 | 只看該作者
Chandra R. Bhat,Frank S. Koppelman Attributes can be robot-specific or general. General Soft Attributes include (vi) Knowledge Limits (does system understand its own applicability and limits?), (vii) Explanation Accuracy (how accurate are explanations themselves), and (viii) Audience. Robot-specific Soft Attributes include (ix) Pred
地板
發(fā)表于 2025-3-22 05:12:30 | 只看該作者
5#
發(fā)表于 2025-3-22 11:44:30 | 只看該作者
Book 2024erpretable techniques. These include whether the RL method is model-agnostic or model-specific, self-explainable or post-hoc, as well as additional analysis of the attributes of scope, when-produced, format, knowledge limits, explanation accuracy, audience, predictability, legibility, readability, a
6#
發(fā)表于 2025-3-22 14:24:15 | 只看該作者
1939-4608 ific, self-explainable or post-hoc, as well as additional analysis of the attributes of scope, when-produced, format, knowledge limits, explanation accuracy, audience, predictability, legibility, readability, a978-3-031-47520-7978-3-031-47518-4Series ISSN 1939-4608 Series E-ISSN 1939-4616
7#
發(fā)表于 2025-3-22 18:49:35 | 只看該作者
8#
發(fā)表于 2025-3-22 23:02:52 | 只看該作者
Classification System, Attributes can be robot-specific or general. General Soft Attributes include (vi) Knowledge Limits (does system understand its own applicability and limits?), (vii) Explanation Accuracy (how accurate are explanations themselves), and (viii) Audience. Robot-specific Soft Attributes include (ix) Pred
9#
發(fā)表于 2025-3-23 03:40:51 | 只看該作者
10#
發(fā)表于 2025-3-23 09:17:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太白县| 伊宁县| 永宁县| 黄冈市| 上蔡县| 聂拉木县| 九台市| 宣威市| 东宁县| 巴彦县| 腾冲县| 涟水县| 万州区| 玉屏| 讷河市| 镇江市| 北流市| 青铜峡市| 海丰县| 拜城县| 页游| 金山区| 上高县| 南雄市| 大渡口区| 弥渡县| 安新县| 山西省| 青浦区| 方山县| 怀来县| 鄂托克旗| 武宣县| 河南省| 大悟县| 龙南县| 金乡县| 安龙县| 远安县| 漳州市| 大连市|