找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning; Uday Kamath,John Liu Book 2021 The Editor(s) (if a

[復(fù)制鏈接]
查看: 30929|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:10:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning
編輯Uday Kamath,John Liu
視頻videohttp://file.papertrans.cn/320/319295/319295.mp4
概述Single resource addressing the theory and practice of interpretability and explainability techniques using case studies.Covers exploratory data analysis, feature importance, interpretable algorithms,
圖書封面Titlebook: Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning;  Uday Kamath,John Liu Book 2021 The Editor(s) (if a
描述This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students.? ? ? ?.--Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU.This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning..--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and A
出版日期Book 2021
關(guān)鍵詞interpretability of models; explainability; intrinsic methods; model-agnostic methods; deep learning met
版次1
doihttps://doi.org/10.1007/978-3-030-83356-5
isbn_softcover978-3-030-83358-9
isbn_ebook978-3-030-83356-5
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning影響因子(影響力)




書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning網(wǎng)絡(luò)公開度




書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning被引頻次




書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning被引頻次學(xué)科排名




書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning年度引用




書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning年度引用學(xué)科排名




書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning讀者反饋




書目名稱Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:27:06 | 只看該作者
Uday Kamath,John LiuSingle resource addressing the theory and practice of interpretability and explainability techniques using case studies.Covers exploratory data analysis, feature importance, interpretable algorithms,
板凳
發(fā)表于 2025-3-22 00:30:05 | 只看該作者
地板
發(fā)表于 2025-3-22 08:06:06 | 只看該作者
5#
發(fā)表于 2025-3-22 10:12:44 | 只看該作者
Exploratory Classification of Time-Series,ore effective models. Since any machine learning model is built from the data, understanding the content on which the model is based is imperative for explainability and interpretability. Many of these techniques that summarize, visualize, and explore data have existed for a long time. There have be
6#
發(fā)表于 2025-3-22 14:48:54 | 只看該作者
Suheir S. Sabbah,Bushra I. Albadawing of how well a model performs from looking at the results of model evaluation is another important way to enhance model explainability. We discuss several techniques to visualize model evaluation including precision-recall curves, ROC curves, residual plots, silhouette coefficients, and others to
7#
發(fā)表于 2025-3-22 17:38:44 | 只看該作者
8#
發(fā)表于 2025-3-23 00:19:01 | 只看該作者
9#
發(fā)表于 2025-3-23 01:34:25 | 只看該作者
10#
發(fā)表于 2025-3-23 09:24:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉峪关市| 榆中县| 弥勒县| 马公市| 南丰县| 沁阳市| 肥西县| 于都县| 三河市| 同仁县| 德兴市| 宁明县| 吕梁市| 汝州市| 罗山县| 湖南省| 长汀县| 宿州市| 元谋县| 万山特区| 莱阳市| 嫩江县| 洱源县| 邯郸市| 郧西县| 富平县| 枣强县| 江山市| 寻乌县| 清涧县| 祁东县| 体育| 轮台县| 保靖县| 金秀| 长兴县| 分宜县| 盱眙县| 阿鲁科尔沁旗| 凤冈县| 屏东市|