找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable Artificial Intelligence; First World Conferen Luca Longo Conference proceedings 2023 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 13:08:10 | 只看該作者
Substance P in the Nervous System,inable artificial intelligence (XAI) to understand black-box machine learning models. While many real-world applications require dynamic models that constantly adapt over time and react to changes in the underlying distribution, XAI, so far, has primarily considered static learning environments, whe
12#
發(fā)表于 2025-3-23 17:55:27 | 只看該作者
Graham W. Taylor,Howard R. Morrises. Among the various XAI techniques, Counterfactual (CF) explanations have a distinctive advantage, as they can be generated post-hoc while still preserving the complete fidelity of the underlying model. The generation of feasible and actionable CFs is a challenging task, which is typically tackled
13#
發(fā)表于 2025-3-23 19:11:22 | 只看該作者
Neuroleptics: Clinical Use in Psychiatry,de such feature attributions has been limited. Clustering algorithms with built-in explanations are scarce. Common algorithm-agnostic approaches involve dimension reduction and subsequent visualization, which transforms the original features used to cluster the data; or training a supervised learnin
14#
發(fā)表于 2025-3-23 23:16:32 | 只看該作者
https://doi.org/10.1007/978-1-4613-0933-8e), compared to other features. Feature importance should not be confused with the . used by most state-of-the-art post-hoc Explainable AI methods. Contrary to feature importance, feature influence is measured against a . or .. The Contextual Importance and Utility (CIU) method provides a unified de
15#
發(fā)表于 2025-3-24 03:05:12 | 只看該作者
The Psychopharmacology of Aggression,planations (CFEs) provide a causal explanation as they introduce changes in the original image that change the classifier’s prediction. Current counterfactual generation approaches suffer from the fact that they potentially modify a too large region in the image that is not entirely causally related
16#
發(fā)表于 2025-3-24 10:10:55 | 只看該作者
https://doi.org/10.1007/978-1-4613-4045-4ver, the inability of these methods to consider potential dependencies among variables poses a significant challenge due to the assumption of feature independence. Recent advancements have incorporated knowledge of causal dependencies, thereby enhancing the quality of the recommended recourse action
17#
發(fā)表于 2025-3-24 10:54:51 | 只看該作者
Robert M. Post,Frederick K. Goodwinusal structure learning algorithms. GCA generates an explanatory graph from high-level human-interpretable features, revealing how these features affect each other and the black-box output. We show how these high-level features do not always have to be human-annotated, but can also be computationall
18#
發(fā)表于 2025-3-24 15:46:28 | 只看該作者
19#
發(fā)表于 2025-3-24 23:01:30 | 只看該作者
20#
發(fā)表于 2025-3-25 01:36:09 | 只看該作者
978-3-031-44063-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆化县| 清远市| 兴业县| 遂溪县| 景东| 三穗县| 开原市| 本溪市| 肃北| 呼玛县| 饶平县| 金堂县| 昌邑市| 长武县| 凤翔县| 英德市| 宣化县| 民勤县| 广安市| 即墨市| 天全县| 塔河县| 丹棱县| 泗阳县| 深水埗区| 龙海市| 桦川县| 乌什县| 田阳县| 乐亭县| 南江县| 黎城县| 洛阳市| 留坝县| 永修县| 华蓥市| 长沙县| 拜城县| 宜宾县| 湘乡市| 嘉兴市|