找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable AI: Foundations, Methodologies and Applications; Mayuri Mehta,Vasile Palade ,Indranath Chatterjee Book 2023 The Editor(s) (if

[復(fù)制鏈接]
查看: 55220|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:15:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications
編輯Mayuri Mehta,Vasile Palade ,Indranath Chatterjee
視頻videohttp://file.papertrans.cn/320/319284/319284.mp4
概述Written for beginners and advanced machine learning users, including engineers and researchers on AI and applications.Covers concepts such as black box models, transparency, interpretable machine lear
叢書(shū)名稱Intelligent Systems Reference Library
圖書(shū)封面Titlebook: Explainable AI: Foundations, Methodologies and Applications;  Mayuri Mehta,Vasile Palade	,Indranath Chatterjee Book 2023 The Editor(s) (if
描述.This book presents an overview and several applications of explainable artificial intelligence (XAI). It covers different aspects related to explainable artificial intelligence, such as the need to make the AI models interpretable, how black box machine/deep learning models can be understood using various XAI methods, different evaluation metrics for XAI, human-centered explainable AI, and applications of explainable AI in health care, security surveillance, transportation, among other areas..The book is suitable for students and academics aiming to build up their background on explainable AI and can guide them in making machine/deep learning models more transparent. The book can be used as a reference book for teaching a graduate course on artificial intelligence, applied machine learning, or neural networks. Researchers working in the area of AI can use this book to discover the recent developments in XAI. Besides its use in academia, this book could be used by practitioners in AI industries, healthcare industries, medicine, autonomous vehicles, and security surveillance, who would like to develop AI techniques and applications with explanations..
出版日期Book 2023
關(guān)鍵詞Intelligent Systems; Artificial Intelligence; Explainable AI; Neural Networks; Deep Learning; Applied Mac
版次1
doihttps://doi.org/10.1007/978-3-031-12807-3
isbn_softcover978-3-031-12809-7
isbn_ebook978-3-031-12807-3Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications影響因子(影響力)




書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications被引頻次




書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications被引頻次學(xué)科排名




書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications年度引用




書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications年度引用學(xué)科排名




書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications讀者反饋




書(shū)目名稱Explainable AI: Foundations, Methodologies and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:02:19 | 只看該作者
Black Box Models for eXplainable Artificial Intelligence,o multiple small options for the IDS area. This chapter aims to implement the arrangement of issues labeled in the various black box methods. This survey helps the researcher to understand the classification of various black box models.
板凳
發(fā)表于 2025-3-22 03:25:18 | 只看該作者
地板
發(fā)表于 2025-3-22 07:15:13 | 只看該作者
Methods and Metrics for Explaining Artificial Intelligence Models: A Review, For clarity on the XAI implementation stage, Pre-model, In-model, and Post-model explainability are elaborated along with the model-agnostic and model-specific techniques. The chapter concludes with a brief discussion on a simple use-case of implementing the XAI method in a real-life problem follow
5#
發(fā)表于 2025-3-22 09:31:14 | 只看該作者
6#
發(fā)表于 2025-3-22 14:37:27 | 只看該作者
Explainable Machine Learning for Autonomous Vehicle Positioning Using SHAP, is a safety critical one and thus requires a qualitative assessment of the reasons for the predictions of the WhONet model at any point of use. There is therefore the need to provide explanations for the WhONet’s predictions to justify its reliability and thus provide a higher level of transparency
7#
發(fā)表于 2025-3-22 18:09:33 | 只看該作者
8#
發(fā)表于 2025-3-23 00:43:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:53:26 | 只看該作者
An Overview of Explainable AI Methods, Forms and Frameworks,
10#
發(fā)表于 2025-3-23 08:08:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 13:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
弥勒县| 合肥市| 深泽县| 隆林| 九龙坡区| 大丰市| 多伦县| 定日县| 安仁县| 钦州市| 平阴县| 浦城县| 上虞市| 白城市| 吉木萨尔县| 建瓯市| 健康| 淅川县| 苗栗市| 萍乡市| 黔西县| 太仓市| 六枝特区| 华容县| 中超| 新昌县| 嵊州市| 昌邑市| 大渡口区| 红河县| 洪雅县| 井冈山市| 同江市| 南和县| 西峡县| 甘洛县| 庆元县| 中山市| 自治县| 榆中县| 靖州|