找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable AI with Python; Leonida Gianfagna,Antonio Di Cecco Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive

[復制鏈接]
樓主: emanate
21#
發(fā)表于 2025-3-25 06:02:45 | 只看該作者
22#
發(fā)表于 2025-3-25 08:06:48 | 只看該作者
23#
發(fā)表于 2025-3-25 13:21:39 | 只看該作者
24#
發(fā)表于 2025-3-25 19:11:30 | 只看該作者
Intrinsic Explainable Models,, XAI can be achieved by looking at the internals with the proper interpretations of the weights and parameters that build the model. We will make practical examples (using Python code) that will deal with the quality of wine, the survival properties in a .-like disaster, and for the ML-addicted the
25#
發(fā)表于 2025-3-25 23:45:15 | 只看該作者
Making Science with Machine Learning and XAI, that . .. We also provided in Table . of Chap. . (don’t worry to look at it now, we will start again from this table in the following) a set of operational criteria based on question to distinguish between interpretability as a lighter form of explainability. As we saw, explainability is able to an
26#
發(fā)表于 2025-3-26 03:21:59 | 只看該作者
Adversarial Machine Learning and Explainability, as shown by Goodfellow et al. (2014), the first one has been classified as a panda by a NN with 55.7% confidence, while the second has been classified by the same NN as a gibbon with 99.3% confidence. What is happening here? The first thoughts are about some mistakes in designing or training the NN
27#
發(fā)表于 2025-3-26 04:20:32 | 只看該作者
28#
發(fā)表于 2025-3-26 12:06:54 | 只看該作者
https://doi.org/10.1007/978-1-4614-4839-6int in this chapter about making science with ML? The answer, long story short, is that explainability is exactly what we need to climb “the ladder of causation” (we will talk about it in a while). We will use XAI in the domain of “knowledge discovery” with a specific focus on scientific knowledge.
29#
發(fā)表于 2025-3-26 15:54:36 | 只看該作者
t is needed in the field, the book details different approaches to XAI depending on specific context and need.? Hands-on work on interpretable models with specific examples leveraging Python are then presented,978-3-030-68639-0978-3-030-68640-6
30#
發(fā)表于 2025-3-26 20:30:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
马山县| 古交市| 上虞市| 井冈山市| 龙岩市| 绥宁县| 鄯善县| 济阳县| 定南县| 鹤壁市| 万山特区| 新化县| 崇阳县| 林州市| 盐山县| 绥中县| 锡林郭勒盟| 崇明县| 尚义县| 肥乡县| 剑川县| 平舆县| 乌兰浩特市| 绥芬河市| 葵青区| 衡南县| 苏州市| 尤溪县| 宁远县| 大同市| 响水县| 平江县| 永宁县| 武川县| 兰考县| 抚州市| 万盛区| 师宗县| 金沙县| 普格县| 青川县|