找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exotic Attractors; From Liapunov Stabil Jorge Buescu Book 1997 Birkh?user Verlag, Basel, Switzerland 1997 chaos.dynamical systems.dynamics.

[復(fù)制鏈接]
查看: 28134|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:26:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Exotic Attractors
副標(biāo)題From Liapunov Stabil
編輯Jorge Buescu
視頻videohttp://file.papertrans.cn/319/318653/318653.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Exotic Attractors; From Liapunov Stabil Jorge Buescu Book 1997 Birkh?user Verlag, Basel, Switzerland 1997 chaos.dynamical systems.dynamics.
描述This book grew out of the work developed at the University of Warwick, under the supervision of Ian Stewart, which formed the core of my Ph.D. Thesis. Most of the results described were obtained in joint work with Ian; as usual under these circumstances, many have been published in research journals over the last two years. Part of Chapter 3 was also joint work with Peter Ashwin. I would like to stress that these were true collaborations. We worked together at all stages; it is meaningless to try to identify which idea originated from whom. While preparing this book, however, I felt that a mere description of the results would not be fitting. First of all, a book is aimed at a wider audience than papers in research journals. More importantly, the work should assume as little as possible, and it should be brought to a form which is pleasurable, not painful, to read.
出版日期Book 1997
關(guān)鍵詞chaos; dynamical systems; dynamics; ergodic theory; instability; stability; stress
版次1
doihttps://doi.org/10.1007/978-3-0348-7421-2
isbn_softcover978-3-0348-7423-6
isbn_ebook978-3-0348-7421-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Verlag, Basel, Switzerland 1997
The information of publication is updating

書目名稱Exotic Attractors影響因子(影響力)




書目名稱Exotic Attractors影響因子(影響力)學(xué)科排名




書目名稱Exotic Attractors網(wǎng)絡(luò)公開度




書目名稱Exotic Attractors網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Exotic Attractors被引頻次




書目名稱Exotic Attractors被引頻次學(xué)科排名




書目名稱Exotic Attractors年度引用




書目名稱Exotic Attractors年度引用學(xué)科排名




書目名稱Exotic Attractors讀者反饋




書目名稱Exotic Attractors讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:52 | 只看該作者
Attractors in Dynamical Systems,The notion of attractor in a dynamical system is an underlying theme throughout this work. In a sense, it is the unifying concept which links the various topics in dynamics which are dealt with in this book.
板凳
發(fā)表于 2025-3-22 00:34:44 | 只看該作者
,Verallgemeinerte komplement?re Kontexte,ypotheses, the set of connected components of a stable set of a discrete dynamical system possesses a tightly constrained structure. More precisely, suppose that . is a locally compact, locally connected metric space, .: . → X is a continuous mapping (not necessarily invertible) and . is a compact t
地板
發(fā)表于 2025-3-22 06:25:55 | 只看該作者
5#
發(fā)表于 2025-3-22 10:16:25 | 只看該作者
https://doi.org/10.1007/978-3-0348-7421-2chaos; dynamical systems; dynamics; ergodic theory; instability; stability; stress
6#
發(fā)表于 2025-3-22 13:15:15 | 只看該作者
7#
發(fā)表于 2025-3-22 18:38:46 | 只看該作者
From Attractor to Chaotic Saddle: a journey through transverse instability, space invariant. This situation can become generic if appropriate constraints are imposed – for instance, if the system has a symmetry. However, there are many other situations in which this is the case, such as in evolutionary dynamics, synchronization of chaotic oscillators and systems with hidden symmetries.
8#
發(fā)表于 2025-3-23 00:55:51 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/e/image/318653.jpg
9#
發(fā)表于 2025-3-23 02:20:31 | 只看該作者
978-3-0348-7423-6Birkh?user Verlag, Basel, Switzerland 1997
10#
發(fā)表于 2025-3-23 07:54:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金秀| 桃源县| 赣榆县| 四平市| 双桥区| 开鲁县| 临城县| 香河县| 怀集县| 抚顺市| 望城县| 平凉市| 东明县| 凌海市| 福州市| 璧山县| 宁化县| 汨罗市| 布拖县| 东台市| 新昌县| 北流市| 九寨沟县| 新河县| 威信县| 措美县| 壤塘县| 石阡县| 南皮县| 民和| 定边县| 怀柔区| 如东县| 静乐县| 奈曼旗| 略阳县| 祁东县| 洪洞县| 长寿区| 秦安县| 临海市|