找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Existence Theory for Nonlinear Ordinary Differential Equations; Donal O’Regan Book 1997 Springer Science+Business Media Dordrecht 1997 Bou

[復制鏈接]
樓主: osteomalacia
41#
發(fā)表于 2025-3-28 17:34:28 | 只看該作者
Frost, Drought, and Heat Resistance,blems on the semi-infinite interval. We also remark here that the general theory of nonlinear boundary value problems on the semi-infinite is not very well developed. Most of the results in the literature require rather technical hypothesis and apply only to narrowly defined classes of problems.
42#
發(fā)表于 2025-3-28 22:50:03 | 只看該作者
43#
發(fā)表于 2025-3-29 01:57:51 | 只看該作者
44#
發(fā)表于 2025-3-29 04:45:28 | 只看該作者
45#
發(fā)表于 2025-3-29 09:21:52 | 只看該作者
46#
發(fā)表于 2025-3-29 11:54:49 | 只看該作者
Impulsive differential equations,impulsive differential equations. In this chapter we present some of the more advanced results to date in the existence theory of nonlinear first order impulsive differential equations with variable times. Let . be a positive integer and . ∈ (0, ∞]. In section 15.3 we establish existence results for the impulsive differential equation (IDE),
47#
發(fā)表于 2025-3-29 19:22:50 | 只看該作者
Book 1997latively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y‘. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de- fined either locally or globa
48#
發(fā)表于 2025-3-29 22:51:58 | 只看該作者
49#
發(fā)表于 2025-3-30 03:41:54 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:59 | 只看該作者
blem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y‘. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de- fined either locall
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 12:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐亭县| 徐水县| 德保县| 祁门县| 黄冈市| 县级市| 沈阳市| 宁城县| 黑龙江省| 砚山县| 石泉县| 甘肃省| 长治县| 乌拉特前旗| 尼木县| 蓝山县| 温州市| 墨脱县| 武陟县| 娱乐| 宁化县| 阿克苏市| 于田县| 长岛县| 托克逊县| 松溪县| 子洲县| 东港市| 淮阳县| 敦煌市| 通辽市| 永新县| 丹棱县| 永平县| 康保县| 肇东市| 阳东县| 古浪县| 涟水县| 英山县| 乡城县|