找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Existence Theory for Nonlinear Ordinary Differential Equations; Donal O’Regan Book 1997 Springer Science+Business Media Dordrecht 1997 Bou

[復(fù)制鏈接]
樓主: osteomalacia
41#
發(fā)表于 2025-3-28 17:34:28 | 只看該作者
Frost, Drought, and Heat Resistance,blems on the semi-infinite interval. We also remark here that the general theory of nonlinear boundary value problems on the semi-infinite is not very well developed. Most of the results in the literature require rather technical hypothesis and apply only to narrowly defined classes of problems.
42#
發(fā)表于 2025-3-28 22:50:03 | 只看該作者
43#
發(fā)表于 2025-3-29 01:57:51 | 只看該作者
44#
發(fā)表于 2025-3-29 04:45:28 | 只看該作者
45#
發(fā)表于 2025-3-29 09:21:52 | 只看該作者
46#
發(fā)表于 2025-3-29 11:54:49 | 只看該作者
Impulsive differential equations,impulsive differential equations. In this chapter we present some of the more advanced results to date in the existence theory of nonlinear first order impulsive differential equations with variable times. Let . be a positive integer and . ∈ (0, ∞]. In section 15.3 we establish existence results for the impulsive differential equation (IDE),
47#
發(fā)表于 2025-3-29 19:22:50 | 只看該作者
Book 1997latively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y‘. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de- fined either locally or globa
48#
發(fā)表于 2025-3-29 22:51:58 | 只看該作者
49#
發(fā)表于 2025-3-30 03:41:54 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:59 | 只看該作者
blem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y‘. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de- fined either locall
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝兴县| 泰顺县| 崇文区| 论坛| 辽阳县| 逊克县| 深圳市| 河东区| 密山市| 监利县| 美姑县| 图木舒克市| 团风县| 攀枝花市| 安丘市| 岱山县| 龙井市| 鸡东县| 波密县| 泾阳县| 田阳县| 沙洋县| 封开县| 安泽县| 天等县| 阿勒泰市| 临澧县| 阿拉善右旗| 曲阜市| 永靖县| 邵武市| 鄯善县| 沈丘县| 三河市| 汝南县| 石棉县| 安龙县| 莆田市| 米易县| 鹿泉市| 司法|