找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exercises in Quantum Mechanics; A Collection of Illu Harry Mavromatis Book 1992Latest edition Kluwer Academic Publishers 1992 Mathematica.a

[復(fù)制鏈接]
樓主: Levelheaded
11#
發(fā)表于 2025-3-23 12:21:58 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:45 | 只看該作者
13#
發(fā)表于 2025-3-23 18:36:52 | 只看該作者
From plans to policies in Vienna,Working in momentum space involves taking the Fourier transform of the eigen-function ., . of the Schr?dinger equation. Thus if:
14#
發(fā)表于 2025-3-24 00:53:39 | 只看該作者
15#
發(fā)表于 2025-3-24 04:49:45 | 只看該作者
https://doi.org/10.1007/978-94-010-1592-9Consider a particle moving subject to a potential
16#
發(fā)表于 2025-3-24 07:33:12 | 只看該作者
Janet J. McIntyre-Mills,A. N. ChristakisWhen quantum-mechanical particles are incident on a potential, one is in the first instance interested in the fraction transmitted through the potential, and the fraction reflected by it. One therefore calculates the probability of reflection and the probability of transmission
17#
發(fā)表于 2025-3-24 12:25:40 | 只看該作者
https://doi.org/10.1007/978-3-030-24158-2Starting with the expression for the expectation value of an operator .in the Schr?dinger representation (at some time t):
18#
發(fā)表于 2025-3-24 15:19:56 | 只看該作者
Matthias Koch,Stefan Hecht,Leonhard GrillThe one-dimensional Schr?dinger equation for a particle in a potential V..is
19#
發(fā)表于 2025-3-24 22:18:26 | 只看該作者
From Post-Democracy to Neo-DemocracyConsider a (bound) particle moving in a central three-dimensional potential ... The (radial) differential equation for ..(.) = ..(.), (where the complete wave function ψ(. = ..(.)..(.)) is
20#
發(fā)表于 2025-3-25 00:54:31 | 只看該作者
From Power Politics to Conflict ResolutionConsider a system with a Hamiltonian . such that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固安县| 泸定县| 巧家县| 方城县| 长顺县| 诏安县| 库伦旗| 乡城县| 滁州市| 金湖县| 依安县| 丹巴县| 巴林右旗| 咸阳市| 宁明县| 丹棱县| 合水县| 崇文区| 镇安县| 安丘市| 余姚市| 宣化县| 科技| 通州区| 桦川县| 塔河县| 长武县| 日喀则市| 肃南| 贡觉县| 巴彦淖尔市| 通许县| 呼玛县| 龙门县| 平罗县| 称多县| 襄樊市| 大城县| 阜新市| 措美县| 都昌县|