找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exercises in Quantum Mechanics; A Collection of Illu Harry Mavromatis Book 1992Latest edition Kluwer Academic Publishers 1992 Mathematica.a

[復(fù)制鏈接]
樓主: Levelheaded
11#
發(fā)表于 2025-3-23 12:21:58 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:45 | 只看該作者
13#
發(fā)表于 2025-3-23 18:36:52 | 只看該作者
From plans to policies in Vienna,Working in momentum space involves taking the Fourier transform of the eigen-function ., . of the Schr?dinger equation. Thus if:
14#
發(fā)表于 2025-3-24 00:53:39 | 只看該作者
15#
發(fā)表于 2025-3-24 04:49:45 | 只看該作者
https://doi.org/10.1007/978-94-010-1592-9Consider a particle moving subject to a potential
16#
發(fā)表于 2025-3-24 07:33:12 | 只看該作者
Janet J. McIntyre-Mills,A. N. ChristakisWhen quantum-mechanical particles are incident on a potential, one is in the first instance interested in the fraction transmitted through the potential, and the fraction reflected by it. One therefore calculates the probability of reflection and the probability of transmission
17#
發(fā)表于 2025-3-24 12:25:40 | 只看該作者
https://doi.org/10.1007/978-3-030-24158-2Starting with the expression for the expectation value of an operator .in the Schr?dinger representation (at some time t):
18#
發(fā)表于 2025-3-24 15:19:56 | 只看該作者
Matthias Koch,Stefan Hecht,Leonhard GrillThe one-dimensional Schr?dinger equation for a particle in a potential V..is
19#
發(fā)表于 2025-3-24 22:18:26 | 只看該作者
From Post-Democracy to Neo-DemocracyConsider a (bound) particle moving in a central three-dimensional potential ... The (radial) differential equation for ..(.) = ..(.), (where the complete wave function ψ(. = ..(.)..(.)) is
20#
發(fā)表于 2025-3-25 00:54:31 | 只看該作者
From Power Politics to Conflict ResolutionConsider a system with a Hamiltonian . such that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
毕节市| 太仆寺旗| 安仁县| 双鸭山市| 玉门市| 嘉义县| 柯坪县| 杨浦区| 华安县| 平定县| 英吉沙县| 龙井市| 晋江市| 临颍县| 牡丹江市| 大荔县| 久治县| 封开县| 沭阳县| 青神县| 合川市| 东阳市| 揭西县| 屯昌县| 巴林右旗| 五指山市| 桦川县| 揭西县| 巴塘县| 特克斯县| 如皋市| 越西县| 牙克石市| 含山县| 定远县| 郑州市| 古浪县| 长治县| 志丹县| 布拖县| 平湖市|