找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exercises in Group Theory; E. S. Lyapin,A. Ya. Aizenshtat,M. M. Lesokhin Book 1972 Plenum Press, New York 1972 Abelian group.Group represe

[復(fù)制鏈接]
樓主: breath-focus
11#
發(fā)表于 2025-3-23 12:24:52 | 只看該作者
Innovation, Innovation, Innovation,Let . be a set and let ρ be a mapping of the Cartesian product . × . into the set of nonnegative real numbers [in other words, to every pair (., .) of elements in . associate a real number ρ(., .) ? 0]. This mapping is called a ., or a . (. is often used instead of ρ) if it satisfies the following three conditions:
12#
發(fā)表于 2025-3-23 17:44:26 | 只看該作者
13#
發(fā)表于 2025-3-23 18:30:12 | 只看該作者
Groups and their Subgroups,Let . be a subgroup of a group .,. ∈; .. The set . is called a . of . in ., and . is called a . of . in .. If . is written as the union of its mutually disjoint right cosets of .: . then such a partition is called the . of . by .. The set {x.,.,…,.,…} is called the . of the right decomposition of . by..
14#
發(fā)表于 2025-3-24 01:15:43 | 只看該作者
Defining Sets of Relations,Let . be a semigroup and . a subset of .. We will consider words in . over . (.. Chapter 2.5).
15#
發(fā)表于 2025-3-24 05:04:11 | 只看該作者
Abelian Groups,The present chapter is devoted to commutative (abelian) groups. For the remainder of this chapter we will only consider abelian groups, where this property will sometimes not be stated explicitly.
16#
發(fā)表于 2025-3-24 08:38:06 | 只看該作者
Topological and Ordered Groups,Let . be a set and let ρ be a mapping of the Cartesian product . × . into the set of nonnegative real numbers [in other words, to every pair (., .) of elements in . associate a real number ρ(., .) ? 0]. This mapping is called a ., or a . (. is often used instead of ρ) if it satisfies the following three conditions:
17#
發(fā)表于 2025-3-24 11:51:18 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:37 | 只看該作者
Evolving Marine Health Threats to Humans,aturally retain the terminology and notation of Chapter 1.2, with one difference. By convention we will denote transformations by lower-case Greek letters, and elements of the set by lower-case Roman letters. In particular, if α maps . onto ., then . will be called the image of . under α, and we write α. = . or α(.) = ..
19#
發(fā)表于 2025-3-24 19:57:51 | 只看該作者
Sets,er or not this object has the given property. We can then consider the collection of all objects having this property as a new mathematical object, which is called a .. The objects are called . of the given set.
20#
發(fā)表于 2025-3-24 23:42:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涿鹿县| 松潘县| 思南县| 甘孜| 普安县| 石首市| 武宁县| 陵川县| 德兴市| 嘉荫县| 姚安县| 醴陵市| 包头市| 福建省| 西城区| 洛宁县| 神木县| 屯留县| 张家港市| 临泽县| 公主岭市| 年辖:市辖区| 通州市| 宣恩县| 昭平县| 南溪县| 大港区| 怀仁县| 北辰区| 察哈| 玉龙| 佛坪县| 呼图壁县| 海南省| 随州市| 灵川县| 中山市| 平原县| 福州市| 大同市| 金塔县|