找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions into Combinatorial Geometry; Vladimir Boltyanski,Horst Martini,Petru S. Soltan Textbook 1997 Springer-Verlag Berlin Heidelberg

[復制鏈接]
樓主: Forbidding
31#
發(fā)表于 2025-3-26 20:56:34 | 只看該作者
Some research problems,n . such that .(.,.) =∥ . ? . ∥ for any ., . ∈ .. Finally, we say that a metric . is . if the set . = { . ∈ . : .(., .) ≤ 1 { is bounded in . . The problem is to describe a condition under which a metric . in . is normable.
32#
發(fā)表于 2025-3-27 02:49:36 | 只看該作者
33#
發(fā)表于 2025-3-27 07:15:49 | 只看該作者
34#
發(fā)表于 2025-3-27 11:33:29 | 只看該作者
-Convexity in normed spaces, .. For example, the carrying flats, faces, inscribed cones, and supporting cones of .-convex sets are .-convex themselves; moreover, each boundary point of a .-convex body is contained in a .-convex supporting hyperplane. Questions referring to separability of .-convex sets are considered in section 13 of this chapter.
35#
發(fā)表于 2025-3-27 17:19:44 | 只看該作者
36#
發(fā)表于 2025-3-27 19:58:42 | 只看該作者
37#
發(fā)表于 2025-3-28 01:54:21 | 只看該作者
38#
發(fā)表于 2025-3-28 03:34:10 | 只看該作者
39#
發(fā)表于 2025-3-28 09:20:30 | 只看該作者
F. Beckcts on synaptic plasticity, the book represents an essential state-of-the-art work for scientists in the fields of biochemistry, molecular biology and the neurosciences, as well as for doctors in neurology and psychiatry alike..978-3-7091-1732-3978-3-7091-0932-8
40#
發(fā)表于 2025-3-28 10:59:31 | 只看該作者
,Coda: ‘I think it is myself I go to meet’—Charlotte Mew’s Afterlives,and poets responding to her work. This final chapter delves into how biographers and writers have responded to these gaps, silences and omissions, in scholarly biographies (Copus), novelistic biographies (Fitzgerald), essays (Boland), poetry (Clampitt, Warner, Boland, Longley, McGuckian). This chapt
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
于田县| 佛冈县| 连平县| 年辖:市辖区| 定边县| 毕节市| 禄丰县| 临沭县| 建平县| 宁陵县| 抚宁县| 昌邑市| 平远县| 天长市| 怀宁县| 太原市| 奉化市| 夹江县| 普格县| 枣阳市| 环江| 南安市| 隆尧县| 东城区| 浮梁县| 普兰店市| 祁东县| 弥渡县| 炎陵县| 龙胜| 古田县| 慈溪市| 温州市| 金寨县| 长兴县| 平定县| 江永县| 饶阳县| 民县| 松原市| 甘德县|