找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions in Ill-Condensed Quantum Matter; From Amorphous Topol Adhip Agarwala Book 2019 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 11340|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:04:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Excursions in Ill-Condensed Quantum Matter
副標(biāo)題From Amorphous Topol
編輯Adhip Agarwala
視頻videohttp://file.papertrans.cn/319/318432/318432.mp4
概述Nominated as an outstanding Ph.D. thesis by the Indian Institute of Science, Bangalore, India.Quick and easy introduction to topological phases, disorder physics and the Kondo effect.Detailed discussi
叢書名稱Springer Theses
圖書封面Titlebook: Excursions in Ill-Condensed Quantum Matter; From Amorphous Topol Adhip Agarwala Book 2019 The Editor(s) (if applicable) and The Author(s),
描述.Impurities, disorder or amorphous systems – ill-condensed matter – are mostly considered inconveniences in the study of materials, which is otherwise heavily based on idealized perfect crystals. The Kondo effect and the scaling theory of localization are among the fundamental and early discoveries which revealed the novelty hidden in impure or disordered systems. Recent advances in condensed matter physics have emphasized the role of topology, spin-orbit coupling, and certain discrete symmetries such as time reversal in many physical phenomena. These have irreversibly transformed the essential ideas and purview of condensed matter physics, both in theoretical and experimental directions. However, many of these recent developments and their implications are limited to, or by, ideas that pertain to clean systems. This thesis deals with various aspects of these new developments, but in the case of unclean systems. The author introduces new ideas such as amorphous topological insulators, fractalized metals and fractionalized spins..
出版日期Book 2019
關(guān)鍵詞Tenfold Way; Topological Quantum Matter; Amorphous Topological Insulators; Fractional Spins; Kondo Effec
版次1
doihttps://doi.org/10.1007/978-3-030-21511-8
isbn_softcover978-3-030-21513-2
isbn_ebook978-3-030-21511-8Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Excursions in Ill-Condensed Quantum Matter影響因子(影響力)




書目名稱Excursions in Ill-Condensed Quantum Matter影響因子(影響力)學(xué)科排名




書目名稱Excursions in Ill-Condensed Quantum Matter網(wǎng)絡(luò)公開度




書目名稱Excursions in Ill-Condensed Quantum Matter網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Excursions in Ill-Condensed Quantum Matter被引頻次




書目名稱Excursions in Ill-Condensed Quantum Matter被引頻次學(xué)科排名




書目名稱Excursions in Ill-Condensed Quantum Matter年度引用




書目名稱Excursions in Ill-Condensed Quantum Matter年度引用學(xué)科排名




書目名稱Excursions in Ill-Condensed Quantum Matter讀者反饋




書目名稱Excursions in Ill-Condensed Quantum Matter讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:50:39 | 只看該作者
Topological Insulators in Amorphous Systems, We will also provide a demonstration of a topological insulator in three dimensions. This work opens a new direction in the experimental search for topological quantum matter, by demonstrating their possibility in, as yet unexplored, amorphous systems. We discuss several examples including glassy systems and other engineered random systems.
板凳
發(fā)表于 2025-3-22 03:10:56 | 只看該作者
地板
發(fā)表于 2025-3-22 04:38:26 | 只看該作者
5#
發(fā)表于 2025-3-22 09:53:47 | 只看該作者
6#
發(fā)表于 2025-3-22 14:05:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:07:00 | 只看該作者
8#
發(fā)表于 2025-3-22 23:37:21 | 只看該作者
Acquisition of LISP Programming Skill,boundary physics. However, not every system has a well defined “bulk” or “boundary”. Neither does every system have a well defined dimension. Is there a notion of a topological state in such systems? If yes, how can they be characterized?
9#
發(fā)表于 2025-3-23 03:42:38 | 只看該作者
Seeking Topological Phases in Fractals,boundary physics. However, not every system has a well defined “bulk” or “boundary”. Neither does every system have a well defined dimension. Is there a notion of a topological state in such systems? If yes, how can they be characterized?
10#
發(fā)表于 2025-3-23 06:10:23 | 只看該作者
Structure of Many-Body Hamiltonians in Different Symmetry Classes,rary interactions. It looks at the essential interplay of non-ordinary symmetries as introduced in Chap.?. and the resulting constraints on the structure of many-body fermionic Hamiltonians. As we will see, the analysis in this chapter will provide us the recipe to construct many-body Hamiltonians in any of the ten symmetry classes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平塘县| 金乡县| 义马市| 安陆市| 崇信县| 丰城市| 兴海县| 湖州市| 岳阳县| 丹巴县| 厦门市| 漯河市| 富裕县| 丹阳市| 通河县| 城步| 镇赉县| 苏尼特左旗| 富顺县| 宁乡县| 泽州县| 云龙县| 潼南县| 三明市| 大姚县| 安义县| 阜平县| 蒙自县| 湖北省| 专栏| 姜堰市| 郁南县| 农安县| 宁乡县| 蓬溪县| 九台市| 梅河口市| 鹤山市| 景东| 龙泉市| 武冈市|