找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Excluded Volume Effects in Polymer Solutions; as Explained by the Lothar Sch?fer Book 1999 Springer-Verlag Berlin Heidelberg 1999 Critical

[復(fù)制鏈接]
樓主: 頌歌
41#
發(fā)表于 2025-3-28 18:25:13 | 只看該作者
42#
發(fā)表于 2025-3-28 21:32:35 | 只看該作者
From Square Tiles to Algebraic Inequalities,rt of different chains. We thus ignore all excluded volume effects, essentially treating a model chain at its Θ-point. We first consider the correlations among individual segments of the chain (Sect. 3.1), which are all found to be given by simple Gaussian functions. We then discuss the segment dens
43#
發(fā)表于 2025-3-29 01:42:57 | 只看該作者
44#
發(fā)表于 2025-3-29 07:06:46 | 只看該作者
45#
發(fā)表于 2025-3-29 09:24:36 | 只看該作者
46#
發(fā)表于 2025-3-29 14:20:52 | 只看該作者
47#
發(fā)表于 2025-3-29 16:51:20 | 只看該作者
Post-Malthusian Dilemmas in Agriculture 4.0,rst we identify the macroscopically relevant length scales, and we use dimensional analysis to write the observables as functions of dimensionless combinations of these variables. Here the essential assumption is that no microscopic scales like ? come in and that we identified all macroscopic scales
48#
發(fā)表于 2025-3-29 21:23:19 | 只看該作者
49#
發(fā)表于 2025-3-30 02:16:43 | 只看該作者
,A People’s Liberation in South Africa,re’ (i.e. unrenormalized) perturbation theory, we introduce model-dependent terms masking the expected universal behavior of the scaling functions. Can we construct a better version of the theory, clearly distinguishing universal from model-dependent features?
50#
發(fā)表于 2025-3-30 04:36:13 | 只看該作者
https://doi.org/10.1007/978-3-319-41435-5cific choice of the renormalization factors. For quantitative calculations we of course have to specify the . factors, and as pointed out in Sect. 11.1, we have some freedom there. We will use the scheme of ‘dimensional regularization’ and ‘minimal subtraction’. This scheme is most efficient for act
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦州市| 永寿县| 南漳县| 大港区| 新密市| 江川县| 博湖县| 鹿泉市| 屏山县| 恩施市| 祁连县| 门头沟区| 永城市| 阳朔县| 汉阴县| 友谊县| 威海市| 基隆市| 临邑县| 福泉市| 长泰县| 齐齐哈尔市| 阳西县| 洛阳市| 五莲县| 陈巴尔虎旗| 德兴市| 全南县| 灵武市| 梁山县| 九江市| 即墨市| 吉水县| 南陵县| 出国| 德格县| 墨竹工卡县| 大兴区| 城步| 莱阳市| 双桥区|