找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Space-Time Models of Gravitational Waves; Peter A. Hogan,Dirk Puetzfeld Book 2022 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: obesity
21#
發(fā)表于 2025-3-25 03:43:24 | 只看該作者
Stephen F. Young,Cynthia D. McCauleyp. 436)]. On the other hand the introduction of a cosmological constant is particularly non–trivial in the case of plane fronted gravitational waves. This has been done by Ozsváth, Robinson and Rózga [2] and in this chapter we reconstruct their model following the geometrical approach adopted in Chap. ..
22#
發(fā)表于 2025-3-25 08:48:17 | 只看該作者
23#
發(fā)表于 2025-3-25 13:28:30 | 只看該作者
24#
發(fā)表于 2025-3-25 16:52:54 | 只看該作者
,‘Spherical’ Gravity Waves, by the purely radiative Petrov type N Robinson–Trautman space–times which are exact solutions of Einstein’s vacuum field equations. These waves emerge from an isolated source and so the wave fronts are expected to collide in general. This phenomenon is exhibited via the geometrical construction outlined in this chapter.
25#
發(fā)表于 2025-3-25 22:23:21 | 只看該作者
,Plane Fronted Limit of?‘Spherical’ Waves,space–time containing the history of the source of the waves [.]. Since we envisage the source capable of arbitrary motion the ‘spherical’ wave fronts produced by it will in general be undergoing collisions and so the asymptotic limit we are looking for should, in general, be the colliding plane fronted waves or Kundt waves of Chap. ..
26#
發(fā)表于 2025-3-26 03:26:54 | 只看該作者
27#
發(fā)表于 2025-3-26 04:26:30 | 只看該作者
28#
發(fā)表于 2025-3-26 10:02:32 | 只看該作者
https://doi.org/10.1007/978-3-031-16826-0exact solutions of gravitational waves; plane fronted gravitational/electromagnetic waves; Bateman wav
29#
發(fā)表于 2025-3-26 14:53:12 | 只看該作者
30#
發(fā)表于 2025-3-26 17:27:53 | 只看該作者
SpringerBriefs in Physicshttp://image.papertrans.cn/e/image/318154.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
斗六市| 射洪县| 镇雄县| 时尚| 贡嘎县| 饶平县| 九龙城区| 安吉县| 嘉兴市| 六枝特区| 漾濞| 三明市| 察隅县| 盖州市| 汝南县| 安西县| 文山县| 扎鲁特旗| 喜德县| 元氏县| 修水县| 连州市| 布拖县| 车致| 灵丘县| 河池市| 元阳县| 秀山| 阿城市| 华池县| 荥经县| 射阳县| 寿光市| 揭阳市| 万载县| 巨野县| 古丈县| 天峨县| 红原县| 冷水江市| 南澳县|