找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Solutions and Scalar Fields in Gravity; Recent Developments Alfredo Macias,Jorge L. Cervantes-Cota,Claus L?mme Book 2001 Springer Sci

[復(fù)制鏈接]
樓主: patch-test
11#
發(fā)表于 2025-3-23 10:03:34 | 只看該作者
Feedback Control Theory for Engineersgth .. Here we basically present, after a short introduction into MAG and its triplet subcase, the results of earlier joint work with García, Macías, and Socorro [1]. Our solution is based on an exact solution of Ozsváth, Robinson, and Rózga describing type N gravitational fields in general relativity as coupled to electromagnetic null-fields.
12#
發(fā)表于 2025-3-23 15:11:24 | 只看該作者
Feed-in tariffs in the European Unionisk has been “continued” to Einstein’s theory of gravitation [1, 2, 3]..After an introduction into these developments, the parametric collapse to a rotating black hole and possible generalizations are discussed.
13#
發(fā)表于 2025-3-23 21:26:09 | 只看該作者
14#
發(fā)表于 2025-3-24 01:44:10 | 只看該作者
Discussion of the Theta Formula for the Ernst Potential of the Rigidly Rotating Disk of Dustrelated to a Riemann surface..The solution is reformulated so as to make it easier to handle and all integrals are transformed into definite real integrals. For the axis of symmetry and the plane of the disk these general formulae can be reduced to standard elliptic functions and elliptic integrals.
15#
發(fā)表于 2025-3-24 03:19:44 | 只看該作者
16#
發(fā)表于 2025-3-24 06:33:23 | 只看該作者
A Plane-Fronted Wave Solution in Metric-Affine Gravitygth .. Here we basically present, after a short introduction into MAG and its triplet subcase, the results of earlier joint work with García, Macías, and Socorro [1]. Our solution is based on an exact solution of Ozsváth, Robinson, and Rózga describing type N gravitational fields in general relativity as coupled to electromagnetic null-fields.
17#
發(fā)表于 2025-3-24 10:41:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:28:22 | 只看該作者
19#
發(fā)表于 2025-3-24 21:57:24 | 只看該作者
20#
發(fā)表于 2025-3-25 02:58:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临泉县| 蓝山县| 蕉岭县| 鞍山市| 安平县| 珠海市| 昭平县| 楚雄市| 夏邑县| 阳城县| 海宁市| 太谷县| 奉新县| 来凤县| 泽普县| 高尔夫| 宁夏| 紫金县| 内乡县| 夏邑县| 彭山县| 五家渠市| 曲松县| 德庆县| 乌拉特中旗| 荣成市| 简阳市| 盖州市| 沅陵县| 大化| 烟台市| 贵南县| 太原市| 云南省| 桂平市| 原平市| 巨野县| 林周县| 芮城县| 阿尔山市| 北宁市|