找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems; Tatsien Li,Ke Wang,Qilong Gu Book 2016 The Author(s) 2

[復(fù)制鏈接]
樓主: advocate
11#
發(fā)表于 2025-3-23 11:10:43 | 只看該作者
Semi-global Piecewise Classical Solutions on a Tree-Like Network,In this chapter, semi-global classical solutions on a single interval will be generalized to semi-global piecewise classical solutions on a tree-like network.
12#
發(fā)表于 2025-3-23 14:28:39 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D First Order Quasilinear Hyperbolic Systems,A complete theory on the local exact boundary controllability for 1-D quasilinear hyperbolic systems has been established in [11, 12, 16–18].
13#
發(fā)表于 2025-3-23 18:38:19 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations on a Planar TreeIn this Chapter, we will generalize the exact boundary controllability of nodal profile for 1-D quasilinear wave equations in a single string, discussed in Chap.?., to that on a planar tree-like network of strings with general topology (see Wang and Gu [22]. For the corresponding result on the exact boundary controllability, cf. Gu and Li [6]).
14#
發(fā)表于 2025-3-23 22:11:39 | 只看該作者
Hui Wang,David Bell,Fionn Murtaghspatial interval, discussed in Chap.?., to that on a tree-like network. A general framework can be established for general 1-D first order quasilinear hyperbolic systems with general nonlinear boundary conditions and general nonlinear interface conditions, provided that there are full of boundary co
15#
發(fā)表于 2025-3-24 04:32:13 | 只看該作者
Latent Semantic Feature Extraction,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
16#
發(fā)表于 2025-3-24 08:01:21 | 只看該作者
Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems978-981-10-2842-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
17#
發(fā)表于 2025-3-24 13:06:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:42:16 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
19#
發(fā)表于 2025-3-24 20:53:43 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:07 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太保市| 西贡区| 张家界市| 南澳县| 横山县| 富民县| 肥城市| 科技| 崇阳县| 富民县| 开封县| 石嘴山市| 庄浪县| 侯马市| 买车| 马公市| 安泽县| 罗定市| 大荔县| 萍乡市| 永顺县| 潜山县| 湛江市| 海淀区| 通河县| 金昌市| 张家界市| 普宁市| 伊通| 从化市| 呼伦贝尔市| 建瓯市| 滨海县| 文化| 瑞昌市| 昌吉市| 澎湖县| 芜湖县| 壶关县| 弋阳县| 麦盖提县|