找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems; Tatsien Li,Ke Wang,Qilong Gu Book 2016 The Author(s) 2

[復制鏈接]
樓主: advocate
11#
發(fā)表于 2025-3-23 11:10:43 | 只看該作者
Semi-global Piecewise Classical Solutions on a Tree-Like Network,In this chapter, semi-global classical solutions on a single interval will be generalized to semi-global piecewise classical solutions on a tree-like network.
12#
發(fā)表于 2025-3-23 14:28:39 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D First Order Quasilinear Hyperbolic Systems,A complete theory on the local exact boundary controllability for 1-D quasilinear hyperbolic systems has been established in [11, 12, 16–18].
13#
發(fā)表于 2025-3-23 18:38:19 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations on a Planar TreeIn this Chapter, we will generalize the exact boundary controllability of nodal profile for 1-D quasilinear wave equations in a single string, discussed in Chap.?., to that on a planar tree-like network of strings with general topology (see Wang and Gu [22]. For the corresponding result on the exact boundary controllability, cf. Gu and Li [6]).
14#
發(fā)表于 2025-3-23 22:11:39 | 只看該作者
Hui Wang,David Bell,Fionn Murtaghspatial interval, discussed in Chap.?., to that on a tree-like network. A general framework can be established for general 1-D first order quasilinear hyperbolic systems with general nonlinear boundary conditions and general nonlinear interface conditions, provided that there are full of boundary co
15#
發(fā)表于 2025-3-24 04:32:13 | 只看該作者
Latent Semantic Feature Extraction,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
16#
發(fā)表于 2025-3-24 08:01:21 | 只看該作者
Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems978-981-10-2842-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
17#
發(fā)表于 2025-3-24 13:06:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:42:16 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
19#
發(fā)表于 2025-3-24 20:53:43 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:07 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 22:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
嫩江县| 泰安市| 专栏| 金湖县| 台北县| 英吉沙县| 大理市| 南昌县| 东台市| 马山县| 温州市| 渝北区| 三河市| 泾川县| 河津市| 长顺县| 丽水市| 甘谷县| 顺昌县| 石楼县| 中江县| 永吉县| 凤庆县| 绥芬河市| 石林| 富锦市| 阿克苏市| 枞阳县| 驻马店市| 绥阳县| 溧阳市| 齐齐哈尔市| 谢通门县| 宜黄县| 彩票| 绥中县| 泸溪县| 华宁县| 综艺| 延长县| 临安市|