找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復(fù)制鏈接]
樓主: 使委屈
31#
發(fā)表于 2025-3-27 01:02:00 | 只看該作者
32#
發(fā)表于 2025-3-27 02:07:23 | 只看該作者
What is the?Best Model? Application-Driven Evaluation for?Large Language Models and industry as they generalize foundation models to various practical tasks in a prompt manner. To assist users in selecting the best model in practical application scenarios, i.e., choosing the model that meets the application requirements while minimizing cost, we introduce A-Eval, an applicatio
33#
發(fā)表于 2025-3-27 09:15:38 | 只看該作者
Sparse Mixture of?Experts Language Models Excel in?Knowledge Distillationn distilling large language models have primarily focused on loss functions and training methodologies, with limited attention given to structural improvements of student models. This is largely due to the challenges posed by cross-architecture distillation and the substantial computational resource
34#
發(fā)表于 2025-3-27 10:43:19 | 只看該作者
35#
發(fā)表于 2025-3-27 14:47:48 | 只看該作者
Reparameterization-Based Parameter-Efficient Fine-Tuning Methods for Large Language Models: A Systemning objectives to achieve unprecedented performance. To fully exploit the potential of LLMs, fine-tuning LLMs on specific downstream tasks is essential. However, traditional full fine-tuning methods pose significant computational challenges, prompting the emergence of Parameter-Efficient Fine-Tunin
36#
發(fā)表于 2025-3-27 21:28:38 | 只看該作者
37#
發(fā)表于 2025-3-27 22:21:50 | 只看該作者
38#
發(fā)表于 2025-3-28 04:54:57 | 只看該作者
39#
發(fā)表于 2025-3-28 06:50:27 | 只看該作者
FIRP: Faster LLM Inference via?Future Intermediate Representation Predictionnature of LLM decoding, which generates only a single token per forward propagation, fails to fully exploit the parallel computational power of GPUs, leading to considerable latency. To address this, we introduce a novel speculative decoding method named FIRP which generates multiple tokens instead
40#
發(fā)表于 2025-3-28 11:48:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁水县| 贞丰县| 九龙坡区| 嘉荫县| 新巴尔虎左旗| 潮安县| 固始县| 松江区| 佛山市| 韩城市| 昌宁县| 木里| 武乡县| 宁陕县| 宜宾县| 南雄市| 乌拉特前旗| 田东县| 西贡区| 岳普湖县| 治多县| 禄丰县| 阜南县| 临猗县| 峨山| 遵义市| 临武县| 平阳县| 安康市| 祁东县| 芜湖县| 彭水| 梅州市| 江口县| 从化市| 陇西县| 中山市| 南城县| 荆门市| 金阳县| 阳曲县|