找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Multi-Criterion Optimization; 12th International C Michael Emmerich,André Deutz,Iryna Yevseyeva Conference proceedings 2023 Th

[復(fù)制鏈接]
查看: 49037|回復(fù): 51
樓主
發(fā)表于 2025-3-21 18:24:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Multi-Criterion Optimization
副標(biāo)題12th International C
編輯Michael Emmerich,André Deutz,Iryna Yevseyeva
視頻videohttp://file.papertrans.cn/318/317983/317983.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Evolutionary Multi-Criterion Optimization; 12th International C Michael Emmerich,André Deutz,Iryna Yevseyeva Conference proceedings 2023 Th
描述.This book constitutes the refereed proceedings of the 12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2022 held in Leiden, The Netherlands, during March 20-24, 2023...The 44 regular papers presented in this book were carefully reviewed and selected from 65 submissions...The papers are divided into the following topical sections: Algorithm Design and Engineering; Machine Learning and Multi-criterion Optimization; Benchmarking and Performance Assessment; Indicator Design and Complexity Analysis; Applications in Real World Domains; and Multi-Criteria Decision Making and Interactive Algorithms...
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; correlation analysis; evolutionary algorithms; evolutionary multiobjective opt
版次1
doihttps://doi.org/10.1007/978-3-031-27250-9
isbn_softcover978-3-031-27249-3
isbn_ebook978-3-031-27250-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)




書目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization網(wǎng)絡(luò)公開度




書目名稱Evolutionary Multi-Criterion Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization被引頻次




書目名稱Evolutionary Multi-Criterion Optimization被引頻次學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization年度引用




書目名稱Evolutionary Multi-Criterion Optimization年度引用學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization讀者反饋




書目名稱Evolutionary Multi-Criterion Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:48:36 | 只看該作者
A Two-Stage Algorithm for?Integer Multiobjective Simulation Optimizationcation. This paper proposes a two-stage fast convergent search algorithm for MDOvS. In its first stage, the multiobjective optimization problem under consideration is decomposed into several single-objective optimization subproblems, and a Pareto retrospective approximation method is used to generat
板凳
發(fā)表于 2025-3-22 03:55:23 | 只看該作者
RegEMO: Sacrificing Pareto-Optimality for?Regularity in?Multi-objective Problem-Solvinghen multiple PO solutions are to be considered for different scenarios as platform-based solutions, a common structure in them, if available, is highly desired for easier understanding, standardization, and management purposes. In this paper, we propose a modified optimization methodology to avoid c
地板
發(fā)表于 2025-3-22 07:45:49 | 只看該作者
5#
發(fā)表于 2025-3-22 12:39:16 | 只看該作者
Data-Driven Evolutionary Multi-objective Optimization Based on?Multiple-Gradient Descent for?Disconnh expensive objective functions. The current research is mainly developed for problems with a ‘regular’ triangle-like Pareto-optimal front (PF), whereas the performance can significantly deteriorate when the PF consists of disconnected segments. Furthermore, the offspring reproduction in the current
6#
發(fā)表于 2025-3-22 14:27:56 | 只看該作者
Eliminating Non-dominated Sorting from?NSGA-IIItion problems since mid-nineties. Of them, NSGA-III was designed to solve problems having three or more objectives efficiently. It is well established that with an increase in number of objectives, an increasingly large proportion of a random population stays non-dominated, thereby making only a few
7#
發(fā)表于 2025-3-22 18:45:10 | 只看該作者
Scalability of Multi-objective Evolutionary Algorithms for Solving Real-World Complex Optimization Pthe curse of dimensionality. This is mainly because the progression of the algorithm along successive generations is based on non-dominance relations that practically do not exist when the number of objectives is high. Also, the existence of many objectives makes the choice of a solution to the prob
8#
發(fā)表于 2025-3-22 23:46:54 | 只看該作者
Multi-objective Learning Using HV Maximizationreferable. Intuitively, building machine learning solutions in such cases would entail providing multiple predictions that span and uniformly cover the Pareto front of all optimal trade-off solutions. We propose a novel approach for multi-objective training of neural networks to approximate the Pare
9#
發(fā)表于 2025-3-23 02:28:44 | 只看該作者
Sparse Adversarial Attack via?Bi-objective Optimizationmonstrated their vulnerability to adversarial attacks. In particular, image classifiers have shown to be vulnerable to fine-tuned noise that perturb a small number of pixels, known as sparse attacks. To generate such perturbations current works either prioritise query efficiency by allowing the size
10#
發(fā)表于 2025-3-23 08:56:34 | 只看該作者
Investigating Innovized Progress Operators with?Different Machine Learning Methodsuld be improved, through the intervention of Machine Learning (ML) methods. These studies have shown how . efficient search directions from the intermittent generations’ solutions, could be utilized to create pro-convergence and pro-diversity offspring, leading to better convergence and diversity, r
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
亚东县| 庆城县| 内丘县| 东方市| 资溪县| 万源市| 淳化县| 扎兰屯市| 大安市| 涞水县| 长顺县| 武隆县| 汉川市| 安泽县| 金沙县| 通山县| 铁岭市| 江津市| 科技| 民权县| 新巴尔虎右旗| 三明市| 富源县| 县级市| 南汇区| 通海县| 伊吾县| 将乐县| 饶河县| 平远县| 观塘区| 嘉定区| 宜章县| 东方市| 增城市| 新乡市| 德州市| 静安区| 突泉县| 新乐市| 拉萨市|