找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Multi-Criterion Optimization; 11th International C Hisao Ishibuchi,Qingfu Zhang,Aimin Zhou Conference proceedings 2021 Springe

[復(fù)制鏈接]
查看: 8575|回復(fù): 57
樓主
發(fā)表于 2025-3-21 20:00:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Evolutionary Multi-Criterion Optimization
副標(biāo)題11th International C
編輯Hisao Ishibuchi,Qingfu Zhang,Aimin Zhou
視頻videohttp://file.papertrans.cn/318/317982/317982.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Evolutionary Multi-Criterion Optimization; 11th International C Hisao Ishibuchi,Qingfu Zhang,Aimin Zhou Conference proceedings 2021 Springe
描述This book constitutes the refereed proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2021 held in Shenzhen, China, in March 2021..The 47 full papers and 14 short papers were carefully reviewed and selected from 120 submissions. The papers are divided into the following topical sections: theory; algorithms; dynamic multi-objective optimization; constrained multi-objective optimization; multi-modal optimization; many-objective optimization; performance evaluations and empirical studies; EMO and machine learning; surrogate modeling and expensive optimization; MCDM and interactive EMO; and applications..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; correlation analysis; evolutionary algorithms; evolutionary multiobjective opt
版次1
doihttps://doi.org/10.1007/978-3-030-72062-9
isbn_softcover978-3-030-72061-2
isbn_ebook978-3-030-72062-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書(shū)目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)




書(shū)目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)學(xué)科排名




書(shū)目名稱Evolutionary Multi-Criterion Optimization網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Evolutionary Multi-Criterion Optimization網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Evolutionary Multi-Criterion Optimization被引頻次




書(shū)目名稱Evolutionary Multi-Criterion Optimization被引頻次學(xué)科排名




書(shū)目名稱Evolutionary Multi-Criterion Optimization年度引用




書(shū)目名稱Evolutionary Multi-Criterion Optimization年度引用學(xué)科排名




書(shū)目名稱Evolutionary Multi-Criterion Optimization讀者反饋




書(shū)目名稱Evolutionary Multi-Criterion Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:21:55 | 只看該作者
地板
發(fā)表于 2025-3-22 05:47:13 | 只看該作者
Pitfalls in Experimental Economicss. We propose a decomposition-based multi-objective evolutionary algorithm for solving MMOP (MOEA/D-MM). Experimental results on benchmarks show that MOEA/D-MM is more effective than some well-known traditional multi-objective evolutionary algorithms on MMOP.
5#
發(fā)表于 2025-3-22 12:07:27 | 只看該作者
https://doi.org/10.1007/978-94-009-5767-1imization problems, showing that it outperforms five classical selection schemes with regard to solution quality and convergence speed. Besides, the Diversity Driven selection operator delivers good and considerably different solutions in the final population, which can be useful as design alternatives.
6#
發(fā)表于 2025-3-22 14:19:46 | 只看該作者
MOEA/D for Multiple Multi-objective Optimizations. We propose a decomposition-based multi-objective evolutionary algorithm for solving MMOP (MOEA/D-MM). Experimental results on benchmarks show that MOEA/D-MM is more effective than some well-known traditional multi-objective evolutionary algorithms on MMOP.
7#
發(fā)表于 2025-3-22 19:26:56 | 只看該作者
Diversity-Driven Selection Operator for Combinatorial Optimizationimization problems, showing that it outperforms five classical selection schemes with regard to solution quality and convergence speed. Besides, the Diversity Driven selection operator delivers good and considerably different solutions in the final population, which can be useful as design alternatives.
8#
發(fā)表于 2025-3-22 23:28:27 | 只看該作者
9#
發(fā)表于 2025-3-23 03:38:45 | 只看該作者
0302-9743 ti-modal optimization; many-objective optimization; performance evaluations and empirical studies; EMO and machine learning; surrogate modeling and expensive optimization; MCDM and interactive EMO; and applications..978-3-030-72061-2978-3-030-72062-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
10#
發(fā)表于 2025-3-23 08:14:32 | 只看該作者
EWA Learning in Bilateral Call Marketsl algorithms are not always inferior to the state of the arts, and all the algorithms considered in this paper face some unexpected challenges when dealing with irregularity of Pareto-optimal front. The findings suggest that a systematic evaluation and analysis is needed for any newly-developed algorithms to avoid biases.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巍山| 翁源县| 浏阳市| 玉门市| 宁强县| 正安县| 浦东新区| 柏乡县| 赞皇县| 闵行区| 大竹县| 都匀市| 始兴县| 高尔夫| 楚雄市| 德令哈市| 阳朔县| 德州市| 方正县| 青河县| 广丰县| 周宁县| 恭城| 安顺市| 固阳县| 江永县| 红河县| 资讯 | 邻水| 杭锦旗| 鄢陵县| 科尔| 闽清县| 张家港市| 丹阳市| 金门县| 安阳县| 汝城县| 桃源县| 祁阳县| 长泰县|