找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Multi-Criterion Optimization; 8th International Co António Gaspar-Cunha,Carlos Henggeler Antunes,Carl Conference proceedings 2

[復(fù)制鏈接]
查看: 44161|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:05:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Evolutionary Multi-Criterion Optimization
副標(biāo)題8th International Co
編輯António Gaspar-Cunha,Carlos Henggeler Antunes,Carl
視頻videohttp://file.papertrans.cn/318/317980/317980.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Evolutionary Multi-Criterion Optimization; 8th International Co António Gaspar-Cunha,Carlos Henggeler Antunes,Carl Conference proceedings 2
描述This book constitutes the refereed proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2015held in Guimar?es, Portugal in March/April 2015. The 68 revised full papers presented together with 4 plenary talks were carefully reviewed and selected from 90 submissions. The EMO 2015 aims to continue these type of developments, being the papers presented focused in: theoretical aspects, algorithms development, many-objectives optimization, robustness and optimization under uncertainty, performance indicators, multiple criteria decision making and real-world applications.
出版日期Conference proceedings 2015
關(guān)鍵詞Automatic Configuration; Combinatorial Optimization; Differential Evolution; Diversity Maintenance; Evol
版次1
doihttps://doi.org/10.1007/978-3-319-15892-1
isbn_softcover978-3-319-15891-4
isbn_ebook978-3-319-15892-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)




書目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization網(wǎng)絡(luò)公開度




書目名稱Evolutionary Multi-Criterion Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization被引頻次




書目名稱Evolutionary Multi-Criterion Optimization被引頻次學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization年度引用




書目名稱Evolutionary Multi-Criterion Optimization年度引用學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization讀者反饋




書目名稱Evolutionary Multi-Criterion Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:38 | 只看該作者
An Optimality Theory Based Proximity Measure for Evolutionary Multi-Objective and Many-Objective Option. To evaluate these algorithms, performance metrics either require the knowledge of the true Pareto-optimal solutions or, are ad-hoc and heuristic based. In this paper, we suggest a KKT proximity measure (KKTPM) that can provide an estimate of the proximity of a set of trade-off solutions from th
板凳
發(fā)表于 2025-3-22 01:53:32 | 只看該作者
地板
發(fā)表于 2025-3-22 07:09:45 | 只看該作者
Clustering Based Parallel Many-Objective Evolutionary Algorithms Using the Shape of the Objective Ve MOEAs are unable to maintain the same effectiveness showed for two or three objectives. Therefore, as a way to ameliorate this performance degradation several authors proposed preference-based methods as an alternative to Pareto based approaches. On the other hand, parallelization has shown to be u
5#
發(fā)表于 2025-3-22 08:55:41 | 只看該作者
Faster Exact Algorithms for Computing Expected Hypervolume Improvementaussian distribution of a new candidate point. It is frequently used as an infill or prescreening criterion in multiobjective optimization with expensive function evaluations where predictions are provided by Kriging or Gaussian process surrogate models. The expected hypervolume improvement has good
6#
發(fā)表于 2025-3-22 15:33:01 | 只看該作者
A GPU-Based Algorithm for a Faster Hypervolume Contribution Computationot only as a quality measure for comparing final results of multi-objective evolutionary algorithms (MOEAs), but also as a selection operator (it is, for example, very suitable for .). However, it has one serious drawback: computing the exact hypervolume is highly costly. The best known algorithms t
7#
發(fā)表于 2025-3-22 19:14:31 | 只看該作者
A Feature-Based Performance Analysis in Evolutionary Multiobjective Optimizationatorial optimization, where a strict theoretical analysis is generally out of reach due to the high complexity of the underlying problem. Based on the examination of problem features from a multiobjective perspective, we improve the understanding of the efficiency of a simple dominance-based EMO alg
8#
發(fā)表于 2025-3-22 22:07:50 | 只看該作者
Modified Distance Calculation in Generational Distance and Inverted Generational Distancermance indicators evaluate the quality of an obtained solution set in comparison with a pre-specified reference point set. Both indicators are based on the distance between a solution and a reference point. The Euclidean distance in an objective space is usually used for distance calculation. Our id
9#
發(fā)表于 2025-3-23 01:45:32 | 只看該作者
On the Behavior of Stochastic Local Search Within Parameter Dependent MOPsmulti-objective optimization problems. The discussions and initial computations indicate that the problem to compute an approximation of the entire solution set of such a problem via stochastic search algorithms is well-conditioned. The new insights may be helpful for the design of novel stochastic
10#
發(fā)表于 2025-3-23 06:37:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 14:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永丰县| 屏东县| 临安市| 墨竹工卡县| 宁波市| 定兴县| 新泰市| 延寿县| 运城市| 仙桃市| 鸡东县| 福泉市| 抚宁县| 扬州市| 宜兰市| 都兰县| 渝北区| 当阳市| 阿巴嘎旗| 绍兴市| 高邑县| 龙南县| 鱼台县| 桑植县| 武陟县| 利津县| 襄垣县| 凉山| 海南省| 沁阳市| 汉沽区| 建水县| 南阳市| 永善县| 焦作市| 镇雄县| 油尖旺区| 南宁市| 福安市| 武功县| 克东县|